2019-11-08 記錄CNV數據分析學習(四)

昨天在復習Linux基礎知識,沒有繼續記錄,今天繼續
參考學習資料TCGA CNV全攻略

具體數據處理流程見NIH的TCGA官網:https://docs.gdc.cancer.gov/Data/Bioinformatics_Pipelines/CNV_Pipeline/

參考文獻:http://mcr.aacrjournals.org/content/12/4/485.long

先看處理流程:

Copy Number Variation Analysis Pipeline

簡介:
This pipeline is built onto the existing TCGA level 2 data generated by Birdsuite and uses the DNAcopy R-package to perform a circular binary segmentation (CBS) analysis [1]. The GDC further transforms these copy number values into segment mean values, which are equal to log2(copy-number/ 2). Diploid regions will have a segment mean of zero, amplified regions will have positive values, and deletions will have negative values.

The GRCh38 probe-set was produced by mapping probe sequences to the GRCh38 reference genome and can be downloaded at the GDC Reference File Website.

Copy Number Estimation

Numeric focal-level Copy Number Variation (CNV) values were generated with "Masked Copy Number Segment" files from tumor aliquots using GISTIC2 [2], [3] on a project level. Only protein-coding genes were kept, and their numeric CNV values were further thresholded by a noise cutoff of 0.3:

  • Genes with focal CNV values smaller than -0.3 are categorized as a "loss" (-1)
  • Genes with focal CNV values larger than 0.3 are categorized as a "gain" (+1)
  • Genes with focal CNV values between and including -0.3 and 0.3 are categorized as "neutral" (0).

GISTIC2 Command Line Parameters

gistic2 \
-b <base_directory> \
-seg <segmentation_file> \
-mk <marker_file> \
-refgene <reference_gene_file> \
-ta 0.1 \
-armpeel 1 \
-brlen 0.7 \
-cap 1.5 \
-conf 0.99 \
-td 0.1 \
-genegistic 1 \
-gcm extreme \
-js 4 \
-maxseg 2000 \
-qvt 0.25 \
-rx 0 \
-savegene 1 \
(-broad 1)

[1] Olshen, Adam B., E. S. Venkatraman, Robert Lucito, and Michael Wigler. "Circular binary segmentation for the analysis of array-based DNA copy number data." Biostatistics 5, no. 4 (2004): 557-572.
[2] Mermel, Craig H., Steven E. Schumacher, Barbara Hill, Matthew L. Meyerson, Rameen Beroukhim, and Gad Getz. "GISTIC2. 0 facilitates sensitive and confident localization of the targets of focal somatic copy-number alteration in human cancers." Genome biology 12, no. 4 (2011): R41.
[3] Beroukhim, Rameen, Craig H. Mermel, Dale Porter, Guo Wei, Soumya Raychaudhuri, Jerry Donovan, Jordi Barretina et al. "The landscape of somatic copy-number alteration across human cancers." Nature 463, no. 7283 (2010): 899.

根據曾老師的例子下載數據

wget -c -r -np -nH -k -L --cut-dirs 6 -p  -A "*snp_6*hg19*Level_3*"  http://gdac.broadinstitute.org/runs/stddata__2016_01_28/data/BRCA/20160128/

如果要下載其它癌癥種類,只需要改變url里面的BRCA即可。如果要下載其它類型的數據,只需要改變-A 后面的匹配規則即可,其實就是打開上面url看到的幾十個文件的文件名的規律。
打開網站可以看到


GDC癌癥列表
$ cd Downloads/
$ wget -c -r -np -nH -k -L --cut-dirs 6 -p  -A "*snp_6*hg19*Level_3*"  http://gdac.broadinstitute.org/runs/stddata__2016_01_28/data/BRCA/20160128/
evel_3.2016012800.0  28%[====>               ]   5.19M  7.15KB/s    eta 23m 51s

下載速度限制,估計需要下載半個小時,如果用加速插件估計會快點。反正是在探索,而且時間也不是太長,就繼續看教程
下載完成總共耗時50分鐘

FINISHED --2019-11-08 10:39:06--
Total wall clock time: 50m 13s
Downloaded: 17 files, 19M in 50m 0s (6.62 KB/s)
Converted links in 0 files in 0 seconds.
(test) Cheng-MacBook-Pro:Downloads chelsea$ 

ls查看下載內容如下

gdac.broadinstitute.org_BRCA-FFPE.Merge_snp__genome_wide_snp_6__broad_mit_edu__Level_3__segmented_scna_hg19__seg.Level_3.2016012800.0.0.tar.gz
gdac.broadinstitute.org_BRCA-FFPE.Merge_snp__genome_wide_snp_6__broad_mit_edu__Level_3__segmented_scna_hg19__seg.Level_3.2016012800.0.0.tar.gz.md5
gdac.broadinstitute.org_BRCA-FFPE.Merge_snp__genome_wide_snp_6__broad_mit_edu__Level_3__segmented_scna_minus_germline_cnv_hg19__seg.Level_3.2016012800.0.0.tar.gz
gdac.broadinstitute.org_BRCA-FFPE.Merge_snp__genome_wide_snp_6__broad_mit_edu__Level_3__segmented_scna_minus_germline_cnv_hg19__seg.Level_3.2016012800.0.0.tar.gz.md5
gdac.broadinstitute.org_BRCA.Merge_snp__genome_wide_snp_6__broad_mit_edu__Level_3__segmented_scna_hg19__seg.Level_3.2016012800.0.0.tar.gz
gdac.broadinstitute.org_BRCA.Merge_snp__genome_wide_snp_6__broad_mit_edu__Level_3__segmented_scna_hg19__seg.Level_3.2016012800.0.0.tar.gz.md5
gdac.broadinstitute.org_BRCA.Merge_snp__genome_wide_snp_6__broad_mit_edu__Level_3__segmented_scna_minus_germline_cnv_hg19__seg.Level_3.2016012800.0.0.tar.gz
gdac.broadinstitute.org_BRCA.Merge_snp__genome_wide_snp_6__broad_mit_edu__Level_3__segmented_scna_minus_germline_cnv_hg19__seg.Level_3.2016012800.0.0.tar.gz.md5

可以看到,下載的文件中有一個名稱里面包含Merge_snp__genome_wide_snp_6__broad_mit_edu__Level_3__segmented_scna_minus_germline_cnv_hg19__seg.Level_3.2016012800.0.0.,其中minus了germline的CNV的就是需要分析的somatic CNV.

#先安裝一下bedtools
(test) Cheng-MacBook-Pro:Downloads chelsea$ cd ~
(test) Cheng-MacBook-Pro:~ chelsea$ cd biosoft/
(test) Cheng-MacBook-Pro:biosoft chelsea$ conda install -y bedtools
...
Preparing transaction: done
Verifying transaction: done
Executing transaction: done
(test) Cheng-MacBook-Pro:biosoft chelsea$ 

拿到CNV做什么?

首先兩個segment文本文件已經可以直接載入IGV查看所有BRCA樣本的CNV情況,如下所示:

還可以進行CNV深度分析

注釋基因

既然是對基因組片段做基因注釋,那么首先就需要拿到基因的坐標信息咯,我是在gencode數據庫里面下載,然后解析成下面的bed格式的,如下:

head ~/reference/gtf/gencode/protein_coding.hg19.position 
chr1    69091   70008   OR4F5
chr1    367640  368634  OR4F29
chr1    621096  622034  OR4F16
chr1    859308  879961  SAMD11
chr1    879584  894689  NOC2L
chr1    895967  901095  KLHL17
chr1    901877  911245  PLEKHN1
chr1    910584  917473  PERM1
chr1    934342  935552  HES4
chr1    936518  949921  ISG15

然后要把下載的CNV文本文件,轉為bed格式的,就是把列的順序調換一下:

head Features.bed  
chr1    3218610 95674710    TCGA-3C-AAAU-10A-01D-A41E-01    53225   0.0055
chr1    95676511    95676518    TCGA-3C-AAAU-10A-01D-A41E-01    2   -1.6636
chr1    95680124    167057183   TCGA-3C-AAAU-10A-01D-A41E-01    24886   0.0053
chr1    167057495   167059336   TCGA-3C-AAAU-10A-01D-A41E-01    3   -1.0999
chr1    167059760   181602002   TCGA-3C-AAAU-10A-01D-A41E-01    9213    -8e-04
chr1    181603120   181609567   TCGA-3C-AAAU-10A-01D-A41E-01    6   -1.2009
chr1    181610685   201473647   TCGA-3C-AAAU-10A-01D-A41E-01    12002   0.0055
chr1    201474400   201474544   TCGA-3C-AAAU-10A-01D-A41E-01    2   -1.4235
chr1    201475220   247813706   TCGA-3C-AAAU-10A-01D-A41E-01    29781   -4e-04

避免重復造輪子,曾老師用其擅長的bedtools解決這個需求,命令如下:

bedtools intersect -a Features.bed  -b  ~/reference/gtf/gencode/protein_coding.hg19.position  -wa -wb  \
| bedtools groupby -i - -g 1-4 -c 10 -o collapse

注釋結果,可以看到,每個CNV片段都注釋到了對應的基因,有些特別大的片段,會被注釋到非常多的基因。

chr8    42584924    42783715    TCGA-5T-A9QA-01A-11D-A41E-01    CHRNB3,CHRNA6,THAP1,RNF170,HOOK3
chr8    42789728    42793594    TCGA-5T-A9QA-01A-11D-A41E-01    HOOK3
chr8    42797957    42933372    TCGA-5T-A9QA-01A-11D-A41E-01    RP11-598P20.5,FNTA,HOOK3
chr8    70952673    70964372    TCGA-5T-A9QA-01A-11D-A41E-01    PRDM14
chr10   42947970    43833200    TCGA-5T-A9QA-01A-11D-A41E-01    BMS1,RET,RASGEF1A,ZNF33B,CSGALNACT2
chr10   106384615   106473355   TCGA-5T-A9QA-01A-11D-A41E-01    SORCS3
chr10   106478366   107298256   TCGA-5T-A9QA-01A-11D-A41E-01    SORCS3
chr10   117457285   117457859   TCGA-5T-A9QA-01A-11D-A41E-01    ATRNL1
chr11   68990173    69277078    TCGA-5T-A9QA-01A-11D-A41E-01    MYEOV
chr11   76378708    76926535    TCGA-5T-A9QA-01A-11D-A41E-01    LRRC32,B3GNT6,OMP,TSKU,MYO7A,ACER3,CAPN5

找SOMATIC CNVS

仔細看上面IGV的pattern你會發現某些染色體的某些片段經常會擴增或者缺失,這個現象就是人們想研究是recurrent CNV regions,當然不會用肉眼看咯,這時候需要用GISTIC這個軟件。找到了recurrent CNV regions同樣是需要進行基因注釋,才能進行下游分析咯。

PICNIC軟件用法:http://www.bio-info-trainee.com/1299.html
GISTIC軟件用法:http://www.bio-info-trainee.com/1648.html
TCGA : http://www.biotrainee.com/thread-1696-1-1.html

從今天的教程中知道了CNV的分析還需要用到的軟件:IGV,bedtools,picnic,gistic,又有得學了。

?著作權歸作者所有,轉載或內容合作請聯系作者
平臺聲明:文章內容(如有圖片或視頻亦包括在內)由作者上傳并發布,文章內容僅代表作者本人觀點,簡書系信息發布平臺,僅提供信息存儲服務。

推薦閱讀更多精彩內容

  • rljs by sennchi Timeline of History Part One The Cognitiv...
    sennchi閱讀 7,424評論 0 10
  • **2014真題Directions:Read the following text. Choose the be...
    又是夜半驚坐起閱讀 9,828評論 0 23
  • genetic burden The number of diseases and deaths that occ...
    e8a37405cb53閱讀 866評論 0 2
  • 這只是一篇流水賬。。。 現在經濟與科技一同高速發展,獲取知識碎片的途徑越來越多,方式也越來越簡單。 當然這是會帶來...
    資深酒客閱讀 249評論 0 1
  • 有些時候,我感覺不到他人的愛,那些關心,那些幫助,都要我一個人消化的時候,我突然有被時間遺忘的感覺,這樣的我,一點...
    簡單Y__閱讀 266評論 0 0