前言
算法和工程是我們算法工程師不可缺少的兩種能力,之前我介紹了DeepLab V1,V2, V3,但總是感覺少了點什么?只有Paper,沒有源碼那不相當于是紙上談兵了,所以今天嘗試結合論文的源碼來進行仔細的分析這三個算法。等我們分析清楚這三個算法之后,有機會再解析一下DeepLabV3。由于博主最近正在看Pytorch版本的《動手學深度學習》,不妨用Pytorch的源碼來進行分析。我分析的源碼均來自這個Pytorch工程:https://github.com/kazuto1011/deeplab-pytorch/tree/master/libs/models
DeepLab V1源碼分析
DeepLab V1的算法原理可以看我之前的推文,地址是:https://mp.weixin.qq.com/s/rvP8-Y-CRuq4HFzR0qJWcg 。我們今天解析的網絡模型是在ResNet殘差模塊的基礎上融合空洞卷積實現的,第一層為 普通卷積,stride = 2,緊跟著 stride = 2 的 max-pooling,然后一個普通的 bottleneck ,一個 stride = 2 的 bottleneck,然后 dilation =2、dilation =4 的bottleneck。
from __future__ import absolute_import, print_function
import torch
import torch.nn as nn
import torch.nn.functional as F
# 定義DeepLabV1的網絡結構
class DeepLabV1(nn.Sequential):
"""
DeepLab v1: Dilated ResNet + 1x1 Conv
Note that this is just a container for loading the pretrained COCO model and not mentioned as "v1" in papers.
"""
def __init__(self, n_classes, n_blocks):
super(DeepLabV1, self).__init__()
ch = [64 * 2 ** p for p in range(6)]
self.add_module("layer1", _Stem(ch[0]))
self.add_module("layer2", _ResLayer(n_blocks[0], ch[0], ch[2], 1, 1))
self.add_module("layer3", _ResLayer(n_blocks[1], ch[2], ch[3], 2, 1))
self.add_module("layer4", _ResLayer(n_blocks[2], ch[3], ch[4], 1, 2))
self.add_module("layer5", _ResLayer(n_blocks[3], ch[4], ch[5], 1, 4))
self.add_module("fc", nn.Conv2d(2048, n_classes, 1))
# 這里是看一下是使用torch的nn模塊中BatchNorm還是在encoding文件中定義的BatchNorm
try:
from encoding.nn import SyncBatchNorm
_BATCH_NORM = SyncBatchNorm
except:
_BATCH_NORM = nn.BatchNorm2d
_BOTTLENECK_EXPANSION = 4
# 定義卷積+BN+ReLU的組件
class _ConvBnReLU(nn.Sequential):
"""
Cascade of 2D convolution, batch norm, and ReLU.
"""
BATCH_NORM = _BATCH_NORM
def __init__(
self, in_ch, out_ch, kernel_size, stride, padding, dilation, relu=True
):
super(_ConvBnReLU, self).__init__()
self.add_module(
"conv",
nn.Conv2d(
in_ch, out_ch, kernel_size, stride, padding, dilation, bias=False
),
)
self.add_module("bn", _BATCH_NORM(out_ch, eps=1e-5, momentum=0.999))
if relu:
self.add_module("relu", nn.ReLU())
# 定義Bottleneck,先1*1卷積降維,然后使用3*3卷積,最后再1*1卷積升維,然后再shortcut連接。
# 降維到多少是由_BOTTLENECK_EXPANSION參數決定的,這是ResNet的Bottleneck。
class _Bottleneck(nn.Module):
"""
Bottleneck block of MSRA ResNet.
"""
def __init__(self, in_ch, out_ch, stride, dilation, downsample):
super(_Bottleneck, self).__init__()
mid_ch = out_ch // _BOTTLENECK_EXPANSION
self.reduce = _ConvBnReLU(in_ch, mid_ch, 1, stride, 0, 1, True)
self.conv3x3 = _ConvBnReLU(mid_ch, mid_ch, 3, 1, dilation, dilation, True)
self.increase = _ConvBnReLU(mid_ch, out_ch, 1, 1, 0, 1, False)
self.shortcut = (
_ConvBnReLU(in_ch, out_ch, 1, stride, 0, 1, False)
if downsample
else lambda x: x # identity
)
def forward(self, x):
h = self.reduce(x)
h = self.conv3x3(h)
h = self.increase(h)
h += self.shortcut(x)
return F.relu(h)
# 定義ResLayer,整個DeepLabv1是用ResLayer堆疊起來的,下采樣是在每個ResLayer的第一個
# Bottleneck發生的。
class _ResLayer(nn.Sequential):
"""
Residual layer with multi grids
"""
def __init__(self, n_layers, in_ch, out_ch, stride, dilation, multi_grids=None):
super(_ResLayer, self).__init__()
if multi_grids is None:
multi_grids = [1 for _ in range(n_layers)]
else:
assert n_layers == len(multi_grids)
# Downsampling is only in the first block
for i in range(n_layers):
self.add_module(
"block{}".format(i + 1),
_Bottleneck(
in_ch=(in_ch if i == 0 else out_ch),
out_ch=out_ch,
stride=(stride if i == 0 else 1),
dilation=dilation * multi_grids[i],
downsample=(True if i == 0 else False),
),
)
# 在進入ResLayer之前,先用7*7的卷積核在原圖滑動,增大感受野。padding方式設為same,大小不變。
# Pool層的核大小為3,步長為2,這會導致特征圖的分辨率發生變化。
class _Stem(nn.Sequential):
"""
The 1st conv layer.
Note that the max pooling is different from both MSRA and FAIR ResNet.
"""
def __init__(self, out_ch):
super(_Stem, self).__init__()
self.add_module("conv1", _ConvBnReLU(3, out_ch, 7, 2, 3, 1))
self.add_module("pool", nn.MaxPool2d(3, 2, 1, ceil_mode=True))
# 相當于Reshape,網絡并沒有用到
class _Flatten(nn.Module):
def forward(self, x):
return x.view(x.size(0), -1)
# 主函數,輸出構建的DeepLab V1模型的結構還有原始圖像分辨率和結果圖像的分辨率
if __name__ == "__main__":
model = DeepLabV1(n_classes=21, n_blocks=[3, 4, 23, 3])
#model.eval()
image = torch.randn(1, 3, 513, 513)
print(model)
print("input:", image.shape)
print("output:", model(image).shape)
我們看一下網絡的輸入和輸出特征圖尺寸:
input: torch.Size([1, 3, 513, 513])
output: torch.Size([1, 21, 65, 65])
網絡結構已經非常清晰了,可以直接運行Python代碼打印出網絡結構或者按照我的源碼注釋來理解。注意,訓練的時候ground truth要resize到和模型的輸出特征圖尺寸一樣大才可以。
DeepLab V2源碼分析
DeepLab V2的論文解讀請看我前面發的文章:https://mp.weixin.qq.com/s/ylv3QfOe_BOuVuxQTd_m_g 。簡單的說,DeepLab V2就是DeepLab V1的基礎上加了一個ASPP模塊,這是一個類似于Inception模塊的結構,包含不同膨脹系數的空洞卷積,增強模型識別同一物體的多尺度能力。這里仍然只分析源碼:
為了方便理解把上篇文章中的ASPP模塊的示意圖放在這里:
from __future__ import absolute_import, print_function
import torch
import torch.nn as nn
import torch.nn.functional as F
# 定義ASPP模塊,這是DeepLab V2和V1的主要區別,可以看到其他部分和V1的代碼一模一樣
class _ASPP(nn.Module):
"""
Atrous spatial pyramid pooling (ASPP)
"""
def __init__(self, in_ch, out_ch, rates):
super(_ASPP, self).__init__()
for i, rate in enumerate(rates):
self.add_module(
"c{}".format(i),
nn.Conv2d(in_ch, out_ch, 3, 1, padding=rate, dilation=rate, bias=True),
)
for m in self.children():
nn.init.normal_(m.weight, mean=0, std=0.01)
nn.init.constant_(m.bias, 0)
def forward(self, x):
return sum([stage(x) for stage in self.children()])
class DeepLabV2(nn.Sequential):
"""
DeepLab v2: Dilated ResNet + ASPP
Output stride is fixed at 8
"""
def __init__(self, n_classes, n_blocks, atrous_rates):
super(DeepLabV2, self).__init__()
ch = [64 * 2 ** p for p in range(6)]
self.add_module("layer1", _Stem(ch[0]))
self.add_module("layer2", _ResLayer(n_blocks[0], ch[0], ch[2], 1, 1))
self.add_module("layer3", _ResLayer(n_blocks[1], ch[2], ch[3], 2, 1))
self.add_module("layer4", _ResLayer(n_blocks[2], ch[3], ch[4], 1, 2))
self.add_module("layer5", _ResLayer(n_blocks[3], ch[4], ch[5], 1, 4))
self.add_module("aspp", _ASPP(ch[5], n_classes, atrous_rates))
def freeze_bn(self):
for m in self.modules():
if isinstance(m, _ConvBnReLU.BATCH_NORM):
m.eval()
try:
from encoding.nn import SyncBatchNorm
_BATCH_NORM = SyncBatchNorm
except:
_BATCH_NORM = nn.BatchNorm2d
_BOTTLENECK_EXPANSION = 4
class _ConvBnReLU(nn.Sequential):
"""
Cascade of 2D convolution, batch norm, and ReLU.
"""
BATCH_NORM = _BATCH_NORM
def __init__(
self, in_ch, out_ch, kernel_size, stride, padding, dilation, relu=True
):
super(_ConvBnReLU, self).__init__()
self.add_module(
"conv",
nn.Conv2d(
in_ch, out_ch, kernel_size, stride, padding, dilation, bias=False
),
)
self.add_module("bn", _BATCH_NORM(out_ch, eps=1e-5, momentum=0.999))
if relu:
self.add_module("relu", nn.ReLU())
class _Bottleneck(nn.Module):
"""
Bottleneck block of MSRA ResNet.
"""
def __init__(self, in_ch, out_ch, stride, dilation, downsample):
super(_Bottleneck, self).__init__()
mid_ch = out_ch // _BOTTLENECK_EXPANSION
self.reduce = _ConvBnReLU(in_ch, mid_ch, 1, stride, 0, 1, True)
self.conv3x3 = _ConvBnReLU(mid_ch, mid_ch, 3, 1, dilation, dilation, True)
self.increase = _ConvBnReLU(mid_ch, out_ch, 1, 1, 0, 1, False)
self.shortcut = (
_ConvBnReLU(in_ch, out_ch, 1, stride, 0, 1, False)
if downsample
else lambda x: x # identity
)
def forward(self, x):
h = self.reduce(x)
h = self.conv3x3(h)
h = self.increase(h)
h += self.shortcut(x)
return F.relu(h)
class _ResLayer(nn.Sequential):
"""
Residual layer with multi grids
"""
def __init__(self, n_layers, in_ch, out_ch, stride, dilation, multi_grids=None):
super(_ResLayer, self).__init__()
if multi_grids is None:
multi_grids = [1 for _ in range(n_layers)]
else:
assert n_layers == len(multi_grids)
# Downsampling is only in the first block
for i in range(n_layers):
self.add_module(
"block{}".format(i + 1),
_Bottleneck(
in_ch=(in_ch if i == 0 else out_ch),
out_ch=out_ch,
stride=(stride if i == 0 else 1),
dilation=dilation * multi_grids[i],
downsample=(True if i == 0 else False),
),
)
class _Stem(nn.Sequential):
"""
The 1st conv layer.
Note that the max pooling is different from both MSRA and FAIR ResNet.
"""
def __init__(self, out_ch):
super(_Stem, self).__init__()
self.add_module("conv1", _ConvBnReLU(3, out_ch, 7, 2, 3, 1))
self.add_module("pool", nn.MaxPool2d(3, 2, 1, ceil_mode=True))
if __name__ == "__main__":
model = DeepLabV2(
n_classes=21, n_blocks=[3, 4, 23, 3], atrous_rates=[6, 12, 18, 24]
)
model.eval()
image = torch.randn(1, 3, 513, 513)
print(model)
print("input:", image.shape)
print("output:", model(image).shape)
可以看到DeepLab V2的代碼除了ASPP模塊,其他部分和V1完全一樣,所以就沒什么好解釋的了。但需要注意的一個點是,訓練的時候,DeepLabV2的學習率采用了Poly的策略,公式為:
,當
時,模型可以取得不普通的分段學習策略MAP值高1.17%的效果。這部分作者也在他的代碼中實現了,如下所示:
from torch.optim.lr_scheduler import _LRScheduler
class PolynomialLR(_LRScheduler):
def __init__(self, optimizer, step_size, iter_max, power, last_epoch=-1):
self.step_size = step_size
self.iter_max = iter_max
self.power = power
super(PolynomialLR, self).__init__(optimizer, last_epoch)
def polynomial_decay(self, lr):
return lr * (1 - float(self.last_epoch) / self.iter_max) ** self.power
def get_lr(self):
if (
(self.last_epoch == 0)
or (self.last_epoch % self.step_size != 0)
or (self.last_epoch > self.iter_max)
):
return [group["lr"] for group in self.optimizer.param_groups]
return [self.polynomial_decay(lr) for lr in self.base_lrs]
可以看到這個類是直接繼承了Pytorch中的學習率調整類_LRScheduler,可以方便的在每個epoch進行學習率調整。
最后網絡的輸入分辨率和輸出分辨率和DeepLab V1一樣,具體訓練和數據制作請看作者的github工程:https://github.com/kazuto1011/deeplab-pytorch/tree/master/libs/models 。
DeepLab V3源碼分析
DeepLab V3論文原理請看我之前發的推文:https://mp.weixin.qq.com/s/D9OX89mklaU4tv74OZMqNg 。這里再簡單回歸一下DeepLab V3使用的關鍵Trick。
- 將BN層加到了ASPP模塊中。
- 使用了Multi-Grid策略,即在模型后端多加幾層不同rate的空洞卷積。
- 具有不同 atrous rates 的 ASPP 能夠有效的捕獲多尺度信息。不過,論文發現,隨著sampling rate的增加,有效filter特征權重(即有效特征區域,而不是補零區域的權重)的數量會變小,極端情況下,當空洞卷積的 rate 和 feature map 的大小一致時,
卷積會退化為
卷積。為了解決這一問題,并將全局內容信息整合到模型中,則采用圖像級特征。即,采用全局平均池化(global average pooling)對模型的 feature map 進行處理,將得到的圖像級特征輸入到一個 1×1 convolution with 256 filters(加入 batch normalization)中,然后將特征進行雙線性上采樣(bilinearly upsample)到特定的空間維度。
DeepLab V3的源碼如下:
from __future__ import absolute_import, print_function
from collections import OrderedDict
import torch
import torch.nn as nn
import torch.nn.functional as F
# 全局平均池化,將得到的圖像特征輸入到一個擁有256個通道的1*1卷積中,最后將特征進行
# 雙線性上采樣到特定的維度(就是輸入到ImagePool之前特征圖的維度)
class _ImagePool(nn.Module):
def __init__(self, in_ch, out_ch):
super().__init__()
self.pool = nn.AdaptiveAvgPool2d(1)
self.conv = _ConvBnReLU(in_ch, out_ch, 1, 1, 0, 1)
def forward(self, x):
_, _, H, W = x.shape
h = self.pool(x)
h = self.conv(h)
h = F.interpolate(h, size=(H, W), mode="bilinear", align_corners=False)
return h
# ASPP模塊,DeepLabV3改進后的,新增了1*1卷積以及圖像全局池化。
class _ASPP(nn.Module):
"""
Atrous spatial pyramid pooling with image-level feature
"""
def __init__(self, in_ch, out_ch, rates):
super(_ASPP, self).__init__()
self.stages = nn.Module()
self.stages.add_module("c0", _ConvBnReLU(in_ch, out_ch, 1, 1, 0, 1))
for i, rate in enumerate(rates):
self.stages.add_module(
"c{}".format(i + 1),
_ConvBnReLU(in_ch, out_ch, 3, 1, padding=rate, dilation=rate),
)
self.stages.add_module("imagepool", _ImagePool(in_ch, out_ch))
def forward(self, x):
return torch.cat([stage(x) for stage in self.stages.children()], dim=1)
# 完整的DeepLabV3的結構,使用帶空洞卷積的ResNet+multi-grid策略+改進后的ASPP
class DeepLabV3(nn.Sequential):
"""
DeepLab v3: Dilated ResNet with multi-grid + improved ASPP
"""
def __init__(self, n_classes, n_blocks, atrous_rates, multi_grids, output_stride):
super(DeepLabV3, self).__init__()
# Stride and dilation
if output_stride == 8:
s = [1, 2, 1, 1]
d = [1, 1, 2, 4]
elif output_stride == 16:
s = [1, 2, 2, 1]
d = [1, 1, 1, 2]
ch = [64 * 2 ** p for p in range(6)]
self.add_module("layer1", _Stem(ch[0]))
self.add_module("layer2", _ResLayer(n_blocks[0], ch[0], ch[2], s[0], d[0]))
self.add_module("layer3", _ResLayer(n_blocks[1], ch[2], ch[3], s[1], d[1]))
self.add_module("layer4", _ResLayer(n_blocks[2], ch[3], ch[4], s[2], d[2]))
self.add_module(
"layer5", _ResLayer(n_blocks[3], ch[4], ch[5], s[3], d[3], multi_grids)
)
self.add_module("aspp", _ASPP(ch[5], 256, atrous_rates))
# 連接所有分支的最終特征,輸入到256個通道的1*1卷積中,并加入BN,再進入最終的1*1卷積,
# 得到logits結果。
concat_ch = 256 * (len(atrous_rates) + 2)
self.add_module("fc1", _ConvBnReLU(concat_ch, 256, 1, 1, 0, 1))
self.add_module("fc2", nn.Conv2d(256, n_classes, kernel_size=1))
try:
from encoding.nn import SyncBatchNorm
_BATCH_NORM = SyncBatchNorm
except:
_BATCH_NORM = nn.BatchNorm2d
_BOTTLENECK_EXPANSION = 4
# 和DeepLabV1定義一樣
class _ConvBnReLU(nn.Sequential):
"""
Cascade of 2D convolution, batch norm, and ReLU.
"""
BATCH_NORM = _BATCH_NORM
def __init__(
self, in_ch, out_ch, kernel_size, stride, padding, dilation, relu=True
):
super(_ConvBnReLU, self).__init__()
self.add_module(
"conv",
nn.Conv2d(
in_ch, out_ch, kernel_size, stride, padding, dilation, bias=False
),
)
self.add_module("bn", _BATCH_NORM(out_ch, eps=1e-5, momentum=0.999))
if relu:
self.add_module("relu", nn.ReLU())
class _Bottleneck(nn.Module):
"""
Bottleneck block of MSRA ResNet.
"""
def __init__(self, in_ch, out_ch, stride, dilation, downsample):
super(_Bottleneck, self).__init__()
mid_ch = out_ch // _BOTTLENECK_EXPANSION
self.reduce = _ConvBnReLU(in_ch, mid_ch, 1, stride, 0, 1, True)
self.conv3x3 = _ConvBnReLU(mid_ch, mid_ch, 3, 1, dilation, dilation, True)
self.increase = _ConvBnReLU(mid_ch, out_ch, 1, 1, 0, 1, False)
self.shortcut = (
_ConvBnReLU(in_ch, out_ch, 1, stride, 0, 1, False)
if downsample
else lambda x: x # identity
)
def forward(self, x):
h = self.reduce(x)
h = self.conv3x3(h)
h = self.increase(h)
h += self.shortcut(x)
return F.relu(h)
class _ResLayer(nn.Sequential):
"""
Residual layer with multi grids
"""
def __init__(self, n_layers, in_ch, out_ch, stride, dilation, multi_grids=None):
super(_ResLayer, self).__init__()
if multi_grids is None:
multi_grids = [1 for _ in range(n_layers)]
else:
assert n_layers == len(multi_grids)
# Downsampling is only in the first block
for i in range(n_layers):
self.add_module(
"block{}".format(i + 1),
_Bottleneck(
in_ch=(in_ch if i == 0 else out_ch),
out_ch=out_ch,
stride=(stride if i == 0 else 1),
dilation=dilation * multi_grids[i],
downsample=(True if i == 0 else False),
),
)
class _Stem(nn.Sequential):
"""
The 1st conv layer.
Note that the max pooling is different from both MSRA and FAIR ResNet.
"""
def __init__(self, out_ch):
super(_Stem, self).__init__()
self.add_module("conv1", _ConvBnReLU(3, out_ch, 7, 2, 3, 1))
self.add_module("pool", nn.MaxPool2d(3, 2, 1, ceil_mode=True))
if __name__ == "__main__":
model = DeepLabV3(
n_classes=21,
n_blocks=[3, 4, 23, 3],
atrous_rates=[6, 12, 18],
multi_grids=[1, 2, 4],
output_stride=8,
)
model.eval()
image = torch.randn(1, 3, 513, 513)
print(model)
print("input:", image.shape)
print("output:", model(image).shape)
和V1,V2的區別在源碼里詳細注釋了。最后DeepLab V3得到輸出結果和V1/V2得到輸出結果是一致的,訓練標簽的設置也是一致的。
結論
通過源碼解析,應該可以對DeepLab V1,V2,V3的原理和特征圖維度變化以及 訓練有清楚的認識了,所以暫時就講到這里了。之后有時間再補上DeepLab V3 Plus的論文理解和源碼解析語義分割就算暫時完結了。之后準備做目標檢測/分類網絡的解析,敬請期待吧。
代碼鏈接
https://github.com/kazuto1011/deeplab-pytorch/tree/master/libs/models
歡迎關注我的微信公眾號GiantPadaCV,期待和你一起交流機器學習,深度學習,圖像算法,優化技術,比賽及日常生活等。