Tensorflow - Variable

文章均遷移到我的主頁 http://zhenlianghe.com

my github: https://github.com/LynnHo

tf.Variable

  1. 變量域?
    • tf.name_scope和tf.variable_scope都會對tf.Variable生成的變量域造成影響,tf.variable_scope中的reuse參數(shù)對tf.Variable沒有影響(本質上是因為tf.Variable受到了tf.variable_scope中同時創(chuàng)建的tf.name_scope的影響)
  2. 重名?
    • 當變量名相同的時候,tf會自動打上序號
      with tf.name_scope('s'):    # or tf.variable_scope('s')
          a = tf.Variable(initial_value=10, name='a')
          b = tf.Variable(initial_value=10, name='a')
          print(a.name)
          print(b.name)
      
      [out]
      s/a:0
      s/a_1:0
      
  3. 初始化?
    • tf.Variable是用一個tensor來初始化的,
      a = tf.Variable(initial_value=[1, 2])
      b = tf.Variable(initial_value=tf.constant([1, 2]))
      c = tf.Variable(initial_value=tf.random_uniform(shape=(1, 2)))
      d = tf.Variable(initial_value=tf.zeros_initializer()(shape=(1, 2), dtype=tf.int64))
      e = tf.Variable(initial_value=slim.xavier_initializer()(shape=(1, 2)))
      
    • tf.zeros_initializer()返回的是一個對象,對象對應的類有相應的call函數(shù),這個call函數(shù)負責產生一個相應類型的tensor
    • slim.xavier_initializer()則返回的是一個函數(shù),調用這個函數(shù)能夠產生一個相應類型的tensor
  4. 變量共享?
    • 用生成的變量去干不同的事情不就共享了嘛
    • tf.Variable產生的變量不能用tf.variable_scope的reuse設置共享,否則會報錯

tf.get_variable

  1. 變量域?
    • tf.get_variable產生的變量只會受到tf.variable_scope的影響,不受tf.name_scope的影響
      with tf.name_scope('s'):
          a = tf.get_variable(name='a', shape=(10, 10))
      with tf.variable_scope('s'):
          b = tf.get_variable(name='a', shape=(10, 10))
      print(a.name)
      print(b.name)
      
      [out]
      a:0
      s/a:0
      
  2. 重名?變量共享?
    • 在同一個域下,重名是會報錯的。
      with tf.variable_scope('s'):
          a = tf.get_variable(name='a', shape=(10, 10))
          b = tf.get_variable(name='a')
      
      [out]
      ValueError: Variable s/a already exists, disallowed. Did you mean to set reuse=True in VarScope?
      
      • 可以在需要復用變量之前改變scope的reuse狀態(tài)
        with tf.variable_scope('s') as s:
            a = tf.get_variable(name='a', shape=(10, 10))
            s.reuse_variables()
            b = tf.get_variable(name='a')
        print(a == b)
        
        [out]
        True
        
      • 也可以設置tf.variable_scope的reuse參數(shù)為True來復用已經定義過的同名變量,但如果沒定義過而設置reuse=True也是會報錯的
        with tf.variable_scope('s', reuse=True):
            a = tf.get_variable(name='a')
        
        [out]
        ValueError: Variable s/a does not exist, or was not created with tf.get_variable(). Did you mean to set reuse=None in VarScope?
        
        with tf.variable_scope('s'):
            a = tf.get_variable(name='a', shape=(10, 10))
        with tf.variable_scope('s', reuse=True):
            b = tf.get_variable(name='a')
        print(a == b)
        
        [out]
        True
        
  3. 初始化?
    a = tf.get_variable(name='a', shape=(1, 2), initializer=tf.constant_initializer([1, 2]), dtype=tf.int64)
    b = tf.get_variable(name='b', shape=(1, 2), initializer=tf.random_uniform_initializer())
    c = tf.get_variable(name='c', shape=(1, 2), initializer=tf.zeros_initializer(), dtype=tf.int64)
    d = tf.get_variable(name='d', shape=(1, 2), initializer=slim.xavier_initializer())
    
    可見,只要給定相應的initializer就可以了,但是要注意dtype的設置,只有設置tf.get_variable的dtype參數(shù)才能正確生效,設置initializer的dtype參數(shù)是無效的

slim層里面的variable

  1. 注意,slim里面的variable生成機制實際上是和tf.get_variable是一樣的,所以特性也是一樣的,比如說變量域只受tf.variable_scope影響而不受tf.name_scope影響
  2. 層的命名
    1. 自動命名變量域,每一個slim層都有一個scope參數(shù),如果不設置這個參數(shù)(默認為None),會有以下兩種情況
      • 在同一個上下問管理器中(with tf.variable_scope('s'):)定義層,slim會按生成順序自動命名變量域(本質上就是因為slim層里面利用了with tf.variable_scope(None, default_name, ...)的機制)
        x = tf.placeholder(tf.float32, shape=[None, 10])
        with tf.variable_scope('s'):
            a = slim.fully_connected(x, 10)
            b = slim.fully_connected(a, 10)
        for var in tf.trainable_variables():
            print(var.name)
        
        [out]  
        s/fully_connected/weights:0
        s/fully_connected/biases:0
        s/fully_connected_1/weights:0
        s/fully_connected_1/biases:0
        
      • 在不同的上下問管理器中定義層,但域名是一樣的,slim將報錯
        • 報錯的例子
          x = tf.placeholder(tf.float32, shape=[None, 10])
          with tf.variable_scope('s'):
              a = slim.fully_connected(x, 10)
          with tf.variable_scope('s'):
              b = slim.fully_connected(x, 10)
          for var in tf.trainable_variables():
              print(var.name)
          
          [out]                
          Variable s/fully_connected/weights already exists, disallowed. Did you mean to set reuse=True in VarScope?
          
        • 報錯的例子
          x = tf.placeholder(tf.float32, shape=[None, 10])
          with tf.variable_scope('s'):
              a = slim.layer_norm(x)
          with tf.variable_scope('s'):
              b = slim.layer_norm(x)
          for var in tf.trainable_variables():
              print(var.name)
          
          [out]
          ValueError: Variable s/LayerNorm/beta already exists, disallowed. Did you mean to set reuse=True in VarScope?
          
    2. 手動命名變量域,顧名思義。需要注意以下情況
      • 在同一個域中,如果兩個層設置的scope參數(shù)是同一個名字,那么slim將報錯
        • 報錯的例子

          x = tf.placeholder(tf.float32, shape=[None, 2])
          with tf.variable_scope('s'):
              a = slim.fully_connected(x, 2, scope='a')
          with tf.variable_scope('s'): # 在這個例子中,這一行可有可無,效果相同
              b = slim.fully_connected(x, 2, scope='a')
          for var in tf.trainable_variables():
              print(var.name)
          
          [out]
          Variable s/a/weights already exists, disallowed. Did you mean to set reuse=True in VarScope?
          
        • 報錯的例子

          x = tf.placeholder(tf.float32, shape=[None, 10])
          with tf.variable_scope('s'):
              a = slim.layer_norm(x, scope='a')
          with tf.variable_scope('s'): # 在這個例子中,這一行可有可無,效果相同
              b = slim.layer_norm(x, scope='a')
          
          [out]
          ValueError: Variable s/a/beta already exists, disallowed. Did you mean to set reuse=True in VarScope?
          
  3. 那么最合理的變量共享方式???實際上是和tf.get_variable定義的變量的共享機制是一樣的,用reuse參數(shù)
    x = tf.placeholder(tf.float32, shape=[None, 2])
    with tf.variable_scope('s'):
        y = slim.fully_connected(x, 2, weights_initializer=tf.random_normal_initializer())
        a = slim.layer_norm(y)
    with tf.variable_scope('s', reuse=True):
        y = slim.fully_connected(x, 2)
        b = slim.layer_norm(y)
    for var in tf.trainable_variables():
        print(var.name)
    
    sess = tf.Session()
    sess.run(tf.global_variables_initializer())
    print(sess.run(a, feed_dict={x: [[1, 7]]}))
    print(sess.run(b, feed_dict={x: [[1, 7]]}))
    
    [out] 
    s/fully_connected/weights:0
    s/fully_connected/biases:0
    s/LayerNorm/beta:0
    s/LayerNorm/gamma:0
    [[-1.          1.00000012]]
    [[-1.          1.00000012]]
    
最后編輯于
?著作權歸作者所有,轉載或內容合作請聯(lián)系作者
平臺聲明:文章內容(如有圖片或視頻亦包括在內)由作者上傳并發(fā)布,文章內容僅代表作者本人觀點,簡書系信息發(fā)布平臺,僅提供信息存儲服務。

推薦閱讀更多精彩內容