預(yù)訓(xùn)練ResNet50-keras

import tensorflow as tf
from tensorflow import keras
resnet = keras.applications.ResNet50(weights="imagenet",include_top=False)
Downloading data from https://github.com/keras-team/keras-applications/releases/download/resnet/resnet50_weights_tf_dim_ordering_tf_kernels_notop.h5
resnet.summary()
x = tf.random.normal([4,224,224,3])
out = resnet(x)
########全局池化層降維
global_average_layer = keras.layers.GlobalAveragePooling2D()  
x = tf.random.normal([4,7,7,2048])
out = global_average_layer(x)     #####輸出(4,2048)
fc = keras.layers.Dense(100)
myNet = keras.Sequential([resnet,global_average_layer,fc])
mynet.summary()
?著作權(quán)歸作者所有,轉(zhuǎn)載或內(nèi)容合作請聯(lián)系作者
平臺聲明:文章內(nèi)容(如有圖片或視頻亦包括在內(nèi))由作者上傳并發(fā)布,文章內(nèi)容僅代表作者本人觀點,簡書系信息發(fā)布平臺,僅提供信息存儲服務(wù)。

推薦閱讀更多精彩內(nèi)容