[轉]時間復雜度和空間復雜度

算法的時間復雜度和空間復雜度合稱為算法的復雜度。

1.時間復雜度

(1)時間頻度

一個算法執行所耗費的時間,從理論上是不能算出來的,必須上機運行測試才能知道。但我們不可能也沒有必要對每個算法都上機測試,只需知道哪個算法花費的時間多,哪個算法花費的時間少就可以了。并且一個算法花費的時間與算法中語句的執行次數成正比例,哪個算法中語句執行次數多,它花費時間就多。一個算法中的語句執行次數稱為語句頻度或時間頻度。記為T(n)。

(2)時間復雜度

在剛才提到的時間頻度中,n稱為問題的規模,當n不斷變化時,時間頻度T(n)也會不斷變化。但有時我們想知道它變化時呈現什么規律。為此,我們引入時間復雜度概念。 一般情況下,算法中基本操作重復執行的次數是問題規模n的某個函數,用T(n)表示,若有某個輔助函數f(n),使得當n趨近于無窮大時,T(n)/f(n)的極限值為不等于零的常數,則稱f(n)是T(n)的同數量級函數。記作T(n)=O(f(n)),稱O(f(n)) 為算法的漸進時間復雜度,簡稱時間復雜度。
時間頻度不同,但時間復雜度可能相同。如:T(n)=n2+3n+4與T(n)=4n2+2n+1它們的頻度不同,但時間復雜度相同,都為O(n2)。
按數量級遞增排列,常見的時間復雜度有:常數階O(1),對數階O(log2n),線性階O(n), 線性對數階O(nlog2n),平方階O(n2),立方階O(n3),..., k次方階O(nk),指數階O(2n)。隨著問題規模n的不斷增大,上述時間復雜度不斷增大,算法的執行效率越低。

(3)最壞時間復雜度和平均時間復雜度

最壞情況下的時間復雜度稱最壞時間復雜度。一般不特別說明,討論的時間復雜度均是最壞情況下的時間復雜度。 這樣做的原因是:最壞情況下的時間復雜度是算法在任何輸入實例上運行時間的上界,這就保證了算法的運行時間不會比任何更長。
在最壞情況下的時間復雜度為T(n)=0(n),它表示對于任何輸入實例,該算法的運行時間不可能大于0(n)。 平均時間復雜度是指所有可能的輸入實例均以等概率出現的情況下,算法的期望運行時間。
指數階0(2n),顯然,時間復雜度為指數階0(2n)的算法效率極低,當n值稍大時就無法應用。

(4)求時間復雜度

【1】如果算法的執行時間不隨著問題規模n的增加而增長,即使算法中有上千條語句,其執行時間也不過是一個較大的常數。此類算法的時間復雜度是O(1)。

x=91; y=100;
while(y>0)
 if(x>100) {
x=x-10;y--;
} 
else x++;

解答: T(n)=O(1)
這個程序看起來有點嚇人,總共循環運行了1100次,但是我們看到n沒有?
沒。這段程序的運行是和n無關的,
就算它再循環一萬年,我們也不管他,只是一個常數階的函數

【2】當有若干個循環語句時,算法的時間復雜度是由嵌套層數最多的循環語句中最內層語句的頻度f(n)決定的。

 x=1; 
for(i=1;i<=n;i++) 
        for(j=1;j<=i;j++)
           for(k=1;k<=j;k++)
               x++;   

該程序段中頻度最大的語句是(5),內循環的執行次數雖然與問題規模n沒有直接關系,但是卻與外層循環的變量取值有關,而最外層循環的次數直接與n有關,因此可以從內層循環向外層分析語句(5)的執行次數: 則該程序段的時間復雜度為T(n)=O(n3/6+低次項)=O(n3)

【3】算法的時間復雜度不僅僅依賴于問題的規模,還與輸入實例的初始狀態有關。
在數值A[0..n-1]中查找給定值K的算法大致如下:

i=n-1;            
while(i>=0&&(A[i]!=k))       
      i--;        
return i;      

此算法中的語句(3)的頻度不僅與問題規模n有關,還與輸入實例中A的各元素取值及K的取值有關: ①若A中沒有與K相等的元素,則語句(3)的頻度f(n)=n; ②若A的最后一個元素等于K,則語句(3)的頻度f(n)是常數0。

(5)時間復雜度評價性能

有兩個算法A1和A2求解同一問題,時間復雜度分別是T1(n)=100n2,T2(n)=5n3。(1)當輸入量n<20時,有T1(n)>T2(n),后者花費的時間較少。(2)隨著問題規模n的增大,兩個算法的時間開銷之比5n3/100n2=n/20亦隨著增大。即當問題規模較大時,算法A1比算法A2要有效地多。它們的漸近時間復雜度O(n2)和O(n3)從宏觀上評價了這兩個算法在時間方面的質量。在算法分析時,往往對算法的時間復雜度和漸近時間復雜度不予區分,而經常是將漸近時間復雜度T(n)=O(f(n))簡稱為時間復雜度,其中的f(n)一般是算法中頻度最大的語句頻度。

2.空間復雜度

一個程序的空間復雜度是指運行完一個程序所需內存的大小。利用程序的空間復雜度,可以對程序的運行所需要的內存多少有個預先估計。一個程序執行時除了需要存儲空間和存儲本身所使用的指令、常數、變量和輸入數據外,還需要一些對數據進行操作的工作單元和存儲一些為現實計算所需信息的輔助空間。程序執行時所需存儲空間包括以下兩部分。

(1)固定部分。

這部分空間的大小與輸入/輸出的數據的個數多少、數值無關。主要包括指令空間(即代碼空間)、數據空間(常量、簡單變量)等所占的空間。這部分屬于靜態空間。

(2)可變空間

這部分空間的主要包括動態分配的空間,以及遞歸棧所需的空間等。這部分的空間大小與算法有關。
一個算法所需的存儲空間用f(n)表示。S(n)=O(f(n))  其中n為問題的規模,S(n)表示空間復雜度。

原文鏈接:http://blog.csdn.net/booirror

最后編輯于
?著作權歸作者所有,轉載或內容合作請聯系作者
平臺聲明:文章內容(如有圖片或視頻亦包括在內)由作者上傳并發布,文章內容僅代表作者本人觀點,簡書系信息發布平臺,僅提供信息存儲服務。

推薦閱讀更多精彩內容

  • 算法的時間復雜度和空間復雜度-總結通常,對于一個給定的算法,我們要做 兩項分析。第一是從數學上證明算法的正確性,這...
    Explorer_Mi閱讀 1,466評論 0 1
  • 通常,對于一個給定的算法,我們要做 兩項分析。第一是從數學上證明算法的正確性,這一步主要用到形式化證明的方法及相關...
    西域小碼閱讀 1,907評論 0 11
  • 算法復雜度 時間復雜度 空間復雜度 什么是時間復雜度 算法執行時間需通過依據該算法編制的程序在計算機上運行時所消耗...
    KODIE閱讀 3,308評論 0 9
  • 0,時間復雜度是指執行算法所需要的計算工作量 1,在計算時間復雜度的時候,先找出算法的基本操作,然后根據相應的各語...
    Santiagogogo閱讀 889評論 0 4
  • 什么是算法的復雜度 算法復雜度,即算法在編寫成可執行程序后,運行時所需要的資源,資源包括時間資源和內存資源。 一個...
    儒生閱讀 1,770評論 0 2