使用sklearn的DecisionTreeClassifier解決分類問題實例。
數據集描述
數據集存放在一個csv文件中,其中11列特征變量,1列目標變量。特征變量的類型有數字類型和字符串類型。
加載數據
from sklearn import tree
from sklearn.model_selection import train_test_split
import pandas as pandas
in_file = 'titanic_data.csv'
full_data = pd.read_csv(in_file)
處理數據
1、剔除Nan的數據
full_data = full_data.dropna(axis=0)
2、拆分特征變量和目標變量
out = full_data['Survived']
features = full_data.drop('Survived', axis = 1)
3、將特征變量中的字符串類型轉成數字類型
features = pandas.get_dummies(features)
拆分訓練集和測試集
X_train, X_test, y_train, y_test = train_test_split(features, out, test_size = 0.2, random_state = 0)
# 顯示切分的結果
print "Training set has {} samples.".format(X_train.shape[0])
print "Testing set has {} samples.".format(X_test.shape[0])
定義評價指標
def accuracy_score(truth, pred):
""" Returns accuracy score for input truth and predictions. """
# Ensure that the number of predictions matches number of outcomes
# 確保預測的數量與結果的數量一致
if len(truth) == len(pred):
# Calculate and return the accuracy as a percent
# 計算預測準確率(百分比)
# 用bool的平均數算百分比
return(truth == pred).mean()*100
else:
return 0
建模
用兩種方式,一種是用網格搜索和交叉驗證找決策樹的最優參數,創建有最優參數的決策樹,一種是默認決策樹
創建決策樹,用網格搜索和交叉驗證找最優參數并擬合數據
from sklearn.model_selection import train_test_split
from sklearn.model_selection import GridSearchCV
from sklearn.model_selection import KFold
from sklearn.metrics import make_scorer
from sklearn.tree import DecisionTreeClassifier
def fit_model_k_fold(X, y):
""" Performs grid search over the 'max_depth' parameter for a
decision tree regressor trained on the input data [X, y]. """
# Create cross-validation sets from the training data
# cv_sets = ShuffleSplit(n_splits = 10, test_size = 0.20, random_state = 0)
k_fold = KFold(n_splits=10)
# Create a decision tree clf object
clf = DecisionTreeClassifier(random_state=80)
params = {'max_depth':range(1,21),'criterion':np.array(['entropy','gini'])}
# Transform 'accuracy_score' into a scoring function using 'make_scorer'
scoring_fnc = make_scorer(accuracy_score)
# Create the grid search object
grid = GridSearchCV(clf, param_grid=params,scoring=scoring_fnc,cv=k_fold)
# Fit the grid search object to the data to compute the optimal model
grid = grid.fit(X, y)
# Return the optimal model after fitting the data
return grid.best_estimator_
查看最優參數
print "k_fold Parameter 'max_depth' is {} for the optimal model.".format(clf.get_params()['max_depth'])
print "k_fold Parameter 'criterion' is {} for the optimal model.".format(clf.get_params()['criterion'])
創建默認參數的決策樹
def predict_4(X, Y):
clf = tree.DecisionTreeClassifier()
clf = clf.fit(X, Y)
return clf
預測
clf = fit_model_k_fold(X_train, y_train)
繪制決策樹
from IPython.display import Image
import pydotplus
dot_data = tree.export_graphviz(clf, out_file=None,
class_names=['0','1'],
filled=True, rounded=True,
special_characters=True)
graph = pydotplus.graph_from_dot_data(dot_data)
Image(graph.create_png())
決策樹
以上內容來自822實驗室2017年5月7日17:30第二次知識分享活動:Titanic幸存者預測。
我們的822,我們的青春
歡迎所有熱愛知識熱愛生活的朋友和822實驗室一起成長,吃喝玩樂,享受知識。