python線程無(wú)法手動(dòng)關(guān)閉

業(yè)務(wù)場(chǎng)景是:大模型每次推理都是新建一個(gè)線程進(jìn)行推理,如果用戶要取消回答,或者遇到異常的時(shí)候,需要停止線程;主要針對(duì)的是第一種情況,流失推理實(shí)際上就是用一個(gè)隊(duì)列保存推理之后的結(jié)果,然后用另外一個(gè)線程不斷地從這個(gè)隊(duì)列里面取推理結(jié)果返回,達(dá)到所謂的“打字機(jī)”效果;以下是模擬的場(chǎng)景:


from queue import Queue, Empty
from threading import Thread
from multiprocessing import Process
import time


class Streamer:
    def __init__ (self, _text_queue):
        self.text_queue = _text_queue
        self.stop_signal = "stop"
    
    def put(self, value):
        self.text_queue.put(value, timeout=0.5)
    
    def __iter__(self):
        return self
    
    def __next__(self):
        try:
            value = self.text_queue.get(timeout=0.5)
        except Empty as empty:
            value = self.stop_signal
        if value == self.stop_signal:
            print("stop here!")
            raise StopIteration()
        return value

def test_func():
    def _inference():
        count = 0
        while True:
            if count < 10:
                streamer.put("shit")
                time.sleep(20) # 例如卡在執(zhí)行.so,比如調(diào)用模型的推理
                print("put shit & getting gem")
                time.sleep(0.2 * count)  # 后面推理超時(shí)
                count += 1
            else:
                print("breaking!")
                break
    t_queue = Queue()
    streamer = Streamer(t_queue)
    
    # 模式1 Thread daemon
    # inference_thread = Thread(target=_inference, daemon=True)
    # inference_thread.start()
    # for idx, i in enumerate(streamer):
    #     print(f"get {i}{idx}")
    
    # 模式2 Thread+stop
    # https://www.cnblogs.com/conscience-remain/p/16930488.html
    # stop_thread(inference_thread) # 54行會(huì)導(dǎo)致停止失敗

    # 模式3 ThreadPoolExecutor的cancel
    # import concurrent.futures
    # with concurrent.futures.ThreadPoolExecutor(max_workers=1) as tpe:
    #     future = tpe.submit(_inference)
    #     for idx, i in enumerate(streamer):
    #         print(i, idx)
    #     # getting jammed or finished
    #     if future.running():
    #         print("canceling here!")
    #         future.cancel() # 取消線程?如果正在運(yùn)行的,并不會(huì)生效
    #     try:
    #         future.result(timeout=1)
    #     except concurrent.futures.TimeoutError as ex:
    #         print(f"ex: {ex}")

    # 模式4 trace 主線程都退出了,子線程還gam
    # thread = thread_with_trace(target=_inference, daemon=True)
    # thread.start()
    # for idx, i in enumerate(streamer):
    #     print(i, idx)
    # thread.kill()

def worker():
    worker = Thread(target=test_func)
    worker.start()
    worker.join()

if __name__ == "__main__":
    worker()
    # time.sleep(5) # 主線程如果不退出,daemon也不會(huì)退出
    print("out")

以上幾種方式,都無(wú)法正常地停止掉當(dāng)前的推理線程。因此無(wú)法達(dá)到停止當(dāng)前推理的功能;
另外,涉及到Python中Thread和ThreadPoolExecutor的相關(guān)用法,另外可以了解什么是daemon線程。

最后編輯于
?著作權(quán)歸作者所有,轉(zhuǎn)載或內(nèi)容合作請(qǐng)聯(lián)系作者
平臺(tái)聲明:文章內(nèi)容(如有圖片或視頻亦包括在內(nèi))由作者上傳并發(fā)布,文章內(nèi)容僅代表作者本人觀點(diǎn),簡(jiǎn)書系信息發(fā)布平臺(tái),僅提供信息存儲(chǔ)服務(wù)。

推薦閱讀更多精彩內(nèi)容