機器學習中的相似性度量

轉自:http://www.cnblogs.com/heaad/archive/2011/03/08/1977733.html 
沒有仔細看,先留著,有空在手機上再看

在做分類時常常需要估算不同樣本之間的相似性度量(Similarity Measurement),這時通常采用的方法就是計算樣本間的“距離”(Distance)。采用什么樣的方法計算距離是很講究,甚至關系到分類的正確與否。

本文的目的就是對常用的相似性度量作一個總結。

本文目錄:

  1. 歐氏距離

  2. 曼哈頓距離

  3. 切比雪夫距離

  4. 閔可夫斯基距離

  5. 標準化歐氏距離

  6. 馬氏距離

  7. 夾角余弦

  8. 漢明距離

  9. 杰卡德距離 & 杰卡德相似系數

  10. 相關系數 & 相關距離

  11. 信息熵

歐氏距離(Euclidean Distance)

歐氏距離是最易于理解的一種距離計算方法,源自歐氏空間中兩點間的距離公式。

(1)二維平面上兩點a(x1,y1)與b(x2,y2)間的歐氏距離:

(2)三維空間兩點a(x1,y1,z1)與b(x2,y2,z2)間的歐氏距離:

(3)兩個n維向量a(x11,x12,…,x1n)與 b(x21,x22,…,x2n)間的歐氏距離:

也可以用表示成向量運算的形式:

(4)Matlab計算歐氏距離

Matlab計算距離主要使用pdist函數。若X是一個M×N的矩陣,則pdist(X)將X矩陣M行的每一行作為一個N維向量,然后計算這M個向量兩兩間的距離。

例子:計算向量(0,0)、(1,0)、(0,2)兩兩間的歐式距離

X = [0 0 ; 1 0 ; 0 2]

D = pdist(X,'euclidean')

結果:

D = 1.0000    2.0000    2.2361

曼哈頓距離(Manhattan Distance)

從名字就可以猜出這種距離的計算方法了。想象你在曼哈頓要從一個十字路口開車到另外一個十字路口,駕駛距離是兩點間的直線距離嗎?顯然不是,除非你能穿越大樓。實際駕駛距離就是這個“曼哈頓距離”。而這也是曼哈頓距離名稱的來源, 曼哈頓距離也稱為城市街區距離(City Block distance)。

(1)二維平面兩點a(x1,y1)與b(x2,y2)間的曼哈頓距離

(2)兩個n維向量a(x11,x12,…,x1n)與 b(x21,x22,…,x2n)間的曼哈頓距離

(3) Matlab計算曼哈頓距離

例子:計算向量(0,0)、(1,0)、(0,2)兩兩間的曼哈頓距離

X = [0 0 ; 1 0 ; 0 2]

D = pdist(X, 'cityblock')

結果:

D =     1     2     3

切比雪夫距離 ( Chebyshev Distance )

國際象棋玩過么?國王走一步能夠移動到相鄰的8個方格中的任意一個。那么國王從格子(x1,y1)走到格子(x2,y2)最少需要多少步?自己走走試試。你會發現最少步數總是max( | x2-x1 | , | y2-y1 | ) 步 。有一種類似的一種距離度量方法叫切比雪夫距離。

(1)二維平面兩點a(x1,y1)與b(x2,y2)間的切比雪夫距離

(2)兩個n維向量a(x11,x12,…,x1n)與 b(x21,x22,…,x2n)間的切比雪夫距離

這個公式的另一種等價形式是

看不出兩個公式是等價的?提示一下:試試用放縮法和夾逼法則來證明。

(3)Matlab計算切比雪夫距離

例子:計算向量(0,0)、(1,0)、(0,2)兩兩間的切比雪夫距離

X = [0 0 ; 1 0 ; 0 2]

D = pdist(X, 'chebychev')

結果:

D =     1     2     2

閔可夫斯基距離(Minkowski Distance)

閔氏距離不是一種距離,而是一組距離的定義。

(1) 閔氏距離的定義

兩個n維變量a(x11,x12,…,x1n)與 b(x21,x22,…,x2n)間的閔可夫斯基距離定義為:

其中p是一個變參數。

當p=1時,就是曼哈頓距離

當p=2時,就是歐氏距離

當p→∞時,就是切比雪夫距離

根據變參數的不同,閔氏距離可以表示一類的距離。

(2)閔氏距離的缺點

閔氏距離,包括曼哈頓距離、歐氏距離和切比雪夫距離都存在明顯的缺點。

舉個例子:二維樣本(身高,體重),其中身高范圍是150190,體重范圍是5060,有三個樣本:a(180,50),b(190,50),c(180,60)。那么a與b之間的閔氏距離(無論是曼哈頓距離、歐氏距離或切比雪夫距離)等于a與c之間的閔氏距離,但是身高的10cm真的等價于體重的10kg么?因此用閔氏距離來衡量這些樣本間的相似度很有問題。

簡單說來,閔氏距離的缺點主要有兩個:(1)將各個分量的量綱(scale),也就是“單位”當作相同的看待了。(2)沒有考慮各個分量的分布(期望,方差等)可能是不同的。

(3)Matlab計算閔氏距離

例子:計算向量(0,0)、(1,0)、(0,2)兩兩間的閔氏距離(以變參數為2的歐氏距離為例)

X = [0 0 ; 1 0 ; 0 2]

D = pdist(X,'minkowski',2)

結果:

D =    1.0000    2.0000    2.2361

標準化歐氏距離 (Standardized Euclidean distance )

(1)標準歐氏距離的定義

標準化歐氏距離是針對簡單歐氏距離的缺點而作的一種改進方案。標準歐氏距離的思路:既然數據各維分量的分布不一樣,好吧!那我先將各個分量都“標準化”到均值、方差相等吧。均值和方差標準化到多少呢?這里先復習點統計學知識吧,假設樣本集X的均值(mean)為m,標準差(standard deviation)為s,那么X的“標準化變量”表示為:

而且標準化變量的數學期望為0,方差為1。因此樣本集的標準化過程(standardization)用公式描述就是:

標準化后的值 = ( 標準化前的值 - 分量的均值 ) /分量的標準差

經過簡單的推導就可以得到兩個n維向量a(x11,x12,…,x1n)與 b(x21,x22,…,x2n)間的標準化歐氏距離的公式:

如果將方差的倒數看成是一個權重,這個公式可以看成是一種加權歐氏距離(Weighted Euclidean distance)。

(2)Matlab計算標準化歐氏距離

例子:計算向量(0,0)、(1,0)、(0,2)兩兩間的標準化歐氏距離 (假設兩個分量的標準差分別為0.5和1)

X = [0 0 ; 1 0 ; 0 2]

D = pdist(X, 'seuclidean',[0.5,1])

結果:

D =    2.0000    2.0000    2.8284

馬氏距離(Mahalanobis Distance)

(1)馬氏距離定義

有M個樣本向量X1~Xm,協方差矩陣記為S,均值記為向量μ,則其中樣本向量X到u的馬氏距離表示為:

而其中向量Xi與Xj之間的馬氏距離定義為:

若協方差矩陣是單位矩陣(各個樣本向量之間獨立同分布),則公式就成了:

也就是歐氏距離了。

若協方差矩陣是對角矩陣,公式變成了標準化歐氏距離。

(2)馬氏距離的優缺點:量綱無關,排除變量之間的相關性的干擾。

(3) Matlab計算(1 2),( 1 3),( 2 2),( 3 1)兩兩之間的馬氏距離

X = [1 2; 1 3; 2 2; 3 1]

Y = pdist(X,'mahalanobis')

結果:

Y =  2.3452    2.0000    2.3452    1.2247    2.4495    1.2247

夾角余弦(Cosine)

有沒有搞錯,又不是學幾何,怎么扯到夾角余弦了?各位看官稍安勿躁。幾何中夾角余弦可用來衡量兩個向量方向的差異,機器學習中借用這一概念來衡量樣本向量之間的差異。

(1)在二維空間中向量A(x1,y1)與向量B(x2,y2)的夾角余弦公式:

(2) 兩個n維樣本點a(x11,x12,…,x1n)和b(x21,x22,…,x2n)的夾角余弦

類似的,對于兩個n維樣本點a(x11,x12,…,x1n)和b(x21,x22,…,x2n),可以使用類似于夾角余弦的概念來衡量它們間的相似程度。

即:

夾角余弦取值范圍為[-1,1]。夾角余弦越大表示兩個向量的夾角越小,夾角余弦越小表示兩向量的夾角越大。當兩個向量的方向重合時夾角余弦取最大值1,當兩個向量的方向完全相反夾角余弦取最小值-1。

夾角余弦的具體應用可以參閱參考文獻[1]。

(3)Matlab計算夾角余弦

例子:計算(1,0)、( 1,1.732)、( -1,0)兩兩間的夾角余弦

X = [1 0 ; 1 1.732 ; -1 0]

D = 1- pdist(X, 'cosine') % Matlab中的pdist(X, 'cosine')得到的是1減夾角余弦的值

結果:

D =    0.5000   -1.0000   -0.5000

漢明距離(Hamming distance)

(1)漢明距離的定義

兩個等長字符串s1與s2之間的漢明距離定義為將其中一個變為另外一個所需要作的最小替換次數。例如字符串“1111”與“1001”之間的漢明距離為2。

應用:信息編碼(為了增強容錯性,應使得編碼間的最小漢明距離盡可能大)。

(2)Matlab計算漢明距離

Matlab中2個向量之間的漢明距離的定義為2個向量不同的分量所占的百分比。

例子:計算向量(0,0)、(1,0)、(0,2)兩兩間的漢明距離

X = [0 0 ; 1 0 ; 0 2];

D = PDIST(X, 'hamming')

結果:

D =    0.5000    0.5000    1.0000

杰卡德相似系數(Jaccard similarity coefficient)

(1) 杰卡德相似系數

兩個集合A和B的交集元素在A,B的并集中所占的比例,稱為兩個集合的杰卡德相似系數,用符號J(A,B)表示。

杰卡德相似系數是衡量兩個集合的相似度一種指標。

(2) 杰卡德距離

與杰卡德相似系數相反的概念是杰卡德距離(Jaccard distance)。杰卡德距離可用如下公式表示:

杰卡德距離用兩個集合中不同元素占所有元素的比例來衡量兩個集合的區分度。

(3) 杰卡德相似系數與杰卡德距離的應用

可將杰卡德相似系數用在衡量樣本的相似度上。

樣本A與樣本B是兩個n維向量,而且所有維度的取值都是0或1。例如:A(0111)和B(1011)。我們將樣本看成是一個集合,1表示集合包含該元素,0表示集合不包含該元素。

p :樣本A與B都是1的維度的個數

q :樣本A是1,樣本B是0的維度的個數

r :樣本A是0,樣本B是1的維度的個數

s :樣本A與B都是0的維度的個數

那么樣本A與B的杰卡德相似系數可以表示為:

這里p+q+r可理解為A與B的并集的元素個數,而p是A與B的交集的元素個數。

而樣本A與B的杰卡德距離表示為:

(4)Matlab 計算杰卡德距離

Matlab的pdist函數定義的杰卡德距離跟我這里的定義有一些差別,Matlab中將其定義為不同的維度的個數占“非全零維度”的比例。

例子:計算(1,1,0)、(1,-1,0)、(-1,1,0)兩兩之間的杰卡德距離

X = [1 1 0; 1 -1 0; -1 1 0]

D = pdist( X , 'jaccard')

結果

D =0.5000    0.5000    1.0000

相關系數 ( Correlation coefficient )與相關距離(Correlation distance)

(1) 相關系數的定義

相關系數是衡量隨機變量X與Y相關程度的一種方法,相關系數的取值范圍是[-1,1]。相關系數的絕對值越大,則表明X與Y相關度越高。當X與Y線性相關時,相關系數取值為1(正線性相關)或-1(負線性相關)。

(2)相關距離的定義

(3)Matlab計算(1, 2 ,3 ,4 )與( 3 ,8 ,7 ,6 )之間的相關系數與相關距離

X = [1 2 3 4 ; 3 8 7 6]

C = corrcoef( X' )   %將返回相關系數矩陣

D = pdist( X , 'correlation')

結果:

C =

    1.0000    0.4781

    0.4781    1.0000

D =0.5219

其中0.4781就是相關系數,0.5219是相關距離。

信息熵(Information Entropy)

信息熵并不屬于一種相似性度量。那為什么放在這篇文章中啊?這個。。。我也不知道。 (╯▽╰)

信息熵是衡量分布的混亂程度或分散程度的一種度量。分布越分散(或者說分布越平均),信息熵就越大。分布越有序(或者說分布越集中),信息熵就越小。

計算給定的樣本集X的信息熵的公式:

參數的含義:

n:樣本集X的分類數

pi:X中第i類元素出現的概率

信息熵越大表明樣本集S分類越分散,信息熵越小則表明樣本集X分類越集中。。當S中n個分類出現的概率一樣大時(都是1/n),信息熵取最大值log2(n)。當X只有一個分類時,信息熵取最小值0

參考資料:

[1]吳軍. 數學之美 系列 12 - 余弦定理和新聞的分類.

http://www.google.com.hk/ggblog/googlechinablog/2006/07/12_4010.html

[2] Wikipedia. Jaccard index.

http://en.wikipedia.org/wiki/Jaccard_index

[3] Wikipedia. Hamming distance

http://en.wikipedia.org/wiki/Hamming_distance

[4] 求馬氏距離(Mahalanobis distance )matlab版

http://junjun0595.blog.163.com/blog/static/969561420100633351210/

[5] Pearson product-moment correlation coefficient

http://en.wikipedia.org/wiki/Pearson_product-moment_correlation_coefficient

最后編輯于
?著作權歸作者所有,轉載或內容合作請聯系作者
平臺聲明:文章內容(如有圖片或視頻亦包括在內)由作者上傳并發布,文章內容僅代表作者本人觀點,簡書系信息發布平臺,僅提供信息存儲服務。
  • 序言:七十年代末,一起剝皮案震驚了整個濱河市,隨后出現的幾起案子,更是在濱河造成了極大的恐慌,老刑警劉巖,帶你破解...
    沈念sama閱讀 228,546評論 6 533
  • 序言:濱河連續發生了三起死亡事件,死亡現場離奇詭異,居然都是意外死亡,警方通過查閱死者的電腦和手機,發現死者居然都...
    沈念sama閱讀 98,570評論 3 418
  • 文/潘曉璐 我一進店門,熙熙樓的掌柜王于貴愁眉苦臉地迎上來,“玉大人,你說我怎么就攤上這事。” “怎么了?”我有些...
    開封第一講書人閱讀 176,505評論 0 376
  • 文/不壞的土叔 我叫張陵,是天一觀的道長。 經常有香客問我,道長,這世上最難降的妖魔是什么? 我笑而不...
    開封第一講書人閱讀 63,017評論 1 313
  • 正文 為了忘掉前任,我火速辦了婚禮,結果婚禮上,老公的妹妹穿的比我還像新娘。我一直安慰自己,他們只是感情好,可當我...
    茶點故事閱讀 71,786評論 6 410
  • 文/花漫 我一把揭開白布。 她就那樣靜靜地躺著,像睡著了一般。 火紅的嫁衣襯著肌膚如雪。 梳的紋絲不亂的頭發上,一...
    開封第一講書人閱讀 55,219評論 1 324
  • 那天,我揣著相機與錄音,去河邊找鬼。 笑死,一個胖子當著我的面吹牛,可吹牛的內容都是我干的。 我是一名探鬼主播,決...
    沈念sama閱讀 43,287評論 3 441
  • 文/蒼蘭香墨 我猛地睜開眼,長吁一口氣:“原來是場噩夢啊……” “哼!你這毒婦竟也來了?” 一聲冷哼從身側響起,我...
    開封第一講書人閱讀 42,438評論 0 288
  • 序言:老撾萬榮一對情侶失蹤,失蹤者是張志新(化名)和其女友劉穎,沒想到半個月后,有當地人在樹林里發現了一具尸體,經...
    沈念sama閱讀 48,971評論 1 335
  • 正文 獨居荒郊野嶺守林人離奇死亡,尸身上長有42處帶血的膿包…… 初始之章·張勛 以下內容為張勛視角 年9月15日...
    茶點故事閱讀 40,796評論 3 354
  • 正文 我和宋清朗相戀三年,在試婚紗的時候發現自己被綠了。 大學時的朋友給我發了我未婚夫和他白月光在一起吃飯的照片。...
    茶點故事閱讀 42,995評論 1 369
  • 序言:一個原本活蹦亂跳的男人離奇死亡,死狀恐怖,靈堂內的尸體忽然破棺而出,到底是詐尸還是另有隱情,我是刑警寧澤,帶...
    沈念sama閱讀 38,540評論 5 359
  • 正文 年R本政府宣布,位于F島的核電站,受9級特大地震影響,放射性物質發生泄漏。R本人自食惡果不足惜,卻給世界環境...
    茶點故事閱讀 44,230評論 3 347
  • 文/蒙蒙 一、第九天 我趴在偏房一處隱蔽的房頂上張望。 院中可真熱鬧,春花似錦、人聲如沸。這莊子的主人今日做“春日...
    開封第一講書人閱讀 34,662評論 0 26
  • 文/蒼蘭香墨 我抬頭看了看天上的太陽。三九已至,卻和暖如春,著一層夾襖步出監牢的瞬間,已是汗流浹背。 一陣腳步聲響...
    開封第一講書人閱讀 35,918評論 1 286
  • 我被黑心中介騙來泰國打工, 沒想到剛下飛機就差點兒被人妖公主榨干…… 1. 我叫王不留,地道東北人。 一個月前我還...
    沈念sama閱讀 51,697評論 3 392
  • 正文 我出身青樓,卻偏偏與公主長得像,于是被迫代替她去往敵國和親。 傳聞我的和親對象是個殘疾皇子,可洞房花燭夜當晚...
    茶點故事閱讀 47,991評論 2 374

推薦閱讀更多精彩內容