線性規劃
線性規劃(Linear programming,簡稱LP)是運籌學中研究較早、發展較快、應用廣泛、方法較成熟的一個重要分支,它是輔助人們進行科學管理的一種數學方法。研究線性約束條件下線性目標函數的極值問題的數學理論和方法。英文縮寫LP。它是運籌學的一個重要分支,廣泛應用于軍事作戰、經濟分析、經營管理和工程技術等方面。為合理地利用有限的人力、物力、財力等資源作出的最優決策,提供科學的依據。
簡單線性規劃模型
min = -2*x(1)-5*x(2);
x(1)+2*x(2)<=8;
x(1)<=4;
x(2)<=3;
lingo實現
lingo求解線性規劃問題,語法比較簡單,基本上直接把模型寫入lingo即可。
model:
sets:
var/1..2/:x;
endsets
min = -2*x(1)-5*x(2);
x(1)+2*x(2)<=8;
x(1)<=4;
x(2)<=3;
end
在模型窗口輸入以上代碼,點擊菜單欄求解(SOLVE)按鈕,即可計算出結果,如下圖所示:
顯示"Global optimal solution found",全局最優解已找到;
目標值:-19;
迭代次數:1;
變量:x(1)=2,x(2)=3;
===========
Global optimal solution found.
Objective value: -19.00000
Infeasibilities: 0.000000
Total solver iterations: 1
Variable Value Reduced Cost
X( 1) 2.000000 0.000000
X( 2) 3.000000 0.000000
Row Slack or Surplus Dual Price
1 -19.00000 -1.000000
2 0.000000 2.000000
3 2.000000 0.000000
4 0.000000 1.000000
lingo工作界面