客:noahsnail.com ?|? CSDN ?|? 簡(jiǎn)書(shū)
本文主要是PyTorch中Variable變量的一些用法。
import torch
from torch.autograd import Variable
tensor = torch.FloatTensor([[1, 2], [3, 4]])
# 定義Variable, requires_grad用來(lái)指定是否需要計(jì)算梯度
variable = Variable(tensor, requires_grad = True)
print tensor
print variable
1 2
3 4
[torch.FloatTensor of size 2x2]
Variable containing:
1 2
3 4
[torch.FloatTensor of size 2x2]
# 計(jì)算x^2的均值
tensor_mean = torch.mean(tensor * tensor)
variable_mean = torch.mean(variable * variable)
print tensor_mean
print variable_mean
7.5
Variable containing:
7.5000
[torch.FloatTensor of size 1]
# variable進(jìn)行反向傳播
# 梯度計(jì)算如下:
# variable_mean = 1/4 * sum(variable * variable)
# d(variable_mean)/d(variable) = 1/4 * 2 * variable = 1/2 * variable
variable_mean.backward()
# 輸出variable中的梯度
print variable.grad
Variable containing:
0.5000 1.0000
1.5000 2.0000
[torch.FloatTensor of size 2x2]
# *表示逐元素點(diǎn)乘,不是矩陣乘法
print tensor * tensor
print variable * variable
1 4
9 16
[torch.FloatTensor of size 2x2]
Variable containing:
1 4
9 16
[torch.FloatTensor of size 2x2]
# 輸出variable中的data, data是tensor
print variable.data
1 2
3 4
[torch.FloatTensor of size 2x2]