這里介紹如何采用TensorFlows(r1.1)構建RNN代碼。
什么是RNN網絡?
RNN是“Recurrent Neural Network”的簡稱,用于學習和預測序列數據的一種神經網絡。它利用當前時刻的Input和之前的狀態State作為輸入,計算得到當前的state并預測當前Output。
初始化
這里嘗試構建一個用于回音預測的RNN網絡,即輸出是前幾個時刻的輸入值。首先采用以下代碼進行初始設置。
from __future__ import print_function, division
import numpy as np
import tensorflow as tf
import matplotlib.pyplot as plt
num_epochs = 100
total_series_length = 50000
truncated_backprop_length = 15
state_size = 4
num_classes = 2
echo_step = 3
batch_size = 5
num_batches = total_series_length//batch_size//truncated_backprop_length
生成數據
生成隨機序列,并reshape成若干batch。既能加速訓練,也能提高魯棒性。
def generateData():
x = np.array(np.random.choice(2, total_series_length, p=[0.5, 0.5]))
y = np.roll(x, echo_step)
y[0:echo_step] = 0
x = x.reshape((batch_size, -1))
y = y.reshape((batch_size, -1))
return (x, y)
構建模型
占位符和變量
聲明用于接收數據的占位符,以及用于訓練的變量。
batchX_placeholder = tf.placeholder(tf.float32, [batch_size, truncated_backprop_length])
batchY_placeholder = tf.placeholder(tf.int32, [batch_size, truncated_backprop_length])
init_state = tf.placeholder(tf.float32, [batch_size, state_size])
W = tf.Variable(np.random.rand(state_size+1, state_size), dtype=tf.float32)
b = tf.Variable(np.zeros((1,state_size)), dtype=tf.float32)
W2 = tf.Variable(np.random.rand(state_size, num_classes),dtype=tf.float32)
b2 = tf.Variable(np.zeros((1,num_classes)), dtype=tf.float32)
建模
構建計算圖。根據當前輸入以及上一時刻的狀態生成當前狀態
inputs_series = tf.unstack(batchX_placeholder, axis=1)
labels_series = tf.unstack(batchY_placeholder, axis=1)
current_state = init_state
states_series = []
for current_input in inputs_series:
current_input = tf.reshape(current_input, [batch_size, 1])
input_and_state_concatenated = tf.concat(1, [current_input, current_state]) # Increasing number of columns
next_state = tf.tanh(tf.matmul(input_and_state_concatenated, W) + b) # Broadcasted addition
states_series.append(next_state)
current_state = next_state
計算損失函數
采用softmax損失函數。logits_series是對多類概率的預測(這里只有兩類),predictions_series是轉換成預測label。
logits_series = [tf.matmul(state, W2) + b2 for state in states_series] #Broadcasted addition
predictions_series = [tf.nn.softmax(logits) for logits in logits_series]
losses = []
for logits, labels in zip(logits_series,labels_series):
losses.append(tf.nn.sparse_softmax_cross_entropy_with_logits(logits=logits, labels=labels))
total_loss = tf.reduce_mean(losses)
train_step = tf.train.AdagradOptimizer(0.3).minimize(total_loss)
可視化
可視化訓練數據、標簽數據和預測數據。當預測數據與標簽數據一致則預測正確。
def plot(loss_list, predictions_series, batchX, batchY):
plt.subplot(2, 3, 1)
plt.cla()
plt.plot(loss_list)
for batch_series_idx in range(5):
one_hot_output_series = np.array(predictions_series)[:, batch_series_idx, :]
single_output_series = np.array([(1 if out[0] < 0.5 else 0) for out in one_hot_output_series])
plt.subplot(2, 3, batch_series_idx + 2)
plt.cla()
plt.axis([0, truncated_backprop_length, 0, 2])
left_offset = range(truncated_backprop_length)
plt.bar(left_offset, batchX[batch_series_idx, :], width=1, color="blue")
plt.bar(left_offset, batchY[batch_series_idx, :] * 0.5, width=1, color="red")
plt.bar(left_offset, single_output_series * 0.3, width=1, color="green")
plt.draw()
plt.pause(0.0001)
訓練
將所有數據階段成batch_size×truncated_backprop_length大小的數據,送入模型進行訓練。
with tf.Session() as sess:
sess.run(tf.initialize_all_variables())
plt.ion()
plt.figure()
plt.show()
loss_list = []
for epoch_idx in range(num_epochs):
x,y = generateData()
_current_state = np.zeros((batch_size, state_size))
print("New data, epoch", epoch_idx)
for batch_idx in range(num_batches):
start_idx = batch_idx * truncated_backprop_length
end_idx = start_idx + truncated_backprop_length
batchX = x[:,start_idx:end_idx]
batchY = y[:,start_idx:end_idx]
_total_loss, _train_step, _current_state, _predictions_series = sess.run(
[total_loss, train_step, current_state, predictions_series],
feed_dict={
batchX_placeholder:batchX,
batchY_placeholder:batchY,
init_state:_current_state
})
loss_list.append(_total_loss)
if batch_idx%100 == 0:
print("Step",batch_idx, "Loss", _total_loss)
plot(loss_list, _predictions_series, batchX, batchY)
plt.ioff()
plt.show()
全部代碼
全部代碼如下所示。
from __future__ import print_function, division
import numpy as np
import tensorflow as tf
import matplotlib.pyplot as plt
num_epochs = 100
total_series_length = 50000
truncated_backprop_length = 15
state_size = 4
num_classes = 2
echo_step = 3
batch_size = 5
num_batches = total_series_length//batch_size//truncated_backprop_length
def generateData():
x = np.array(np.random.choice(2, total_series_length, p=[0.5, 0.5]))
y = np.roll(x, echo_step)
y[0:echo_step] = 0
x = x.reshape((batch_size, -1)) # The first index changing slowest, subseries as rows
y = y.reshape((batch_size, -1))
return (x, y)
batchX_placeholder = tf.placeholder(tf.float32, [batch_size, truncated_backprop_length])
batchY_placeholder = tf.placeholder(tf.int32, [batch_size, truncated_backprop_length])
init_state = tf.placeholder(tf.float32, [batch_size, state_size])
W = tf.Variable(np.random.rand(state_size+1, state_size), dtype=tf.float32)
b = tf.Variable(np.zeros((1,state_size)), dtype=tf.float32)
W2 = tf.Variable(np.random.rand(state_size, num_classes),dtype=tf.float32)
b2 = tf.Variable(np.zeros((1,num_classes)), dtype=tf.float32)
# Unpack columns
inputs_series = tf.unstack(batchX_placeholder, axis=1)
labels_series = tf.unstack(batchY_placeholder, axis=1)
# Forward pass
current_state = init_state
states_series = []
for current_input in inputs_series:
current_input = tf.reshape(current_input, [batch_size, 1])
input_and_state_concatenated = tf.concat([current_input, current_state], axis=1) # Increasing number of columns
next_state = tf.tanh(tf.matmul(input_and_state_concatenated, W) + b) # Broadcasted addition
states_series.append(next_state)
current_state = next_state
logits_series = [tf.matmul(state, W2) + b2 for state in states_series] #Broadcasted addition
predictions_series = [tf.nn.softmax(logits) for logits in logits_series]
losses = []
for logits, labels in zip(logits_series,labels_series):
losses.append(tf.nn.sparse_softmax_cross_entropy_with_logits(logits=logits, labels=labels))
total_loss = tf.reduce_mean(losses)
train_step = tf.train.AdagradOptimizer(0.3).minimize(total_loss)
def plot(loss_list, predictions_series, batchX, batchY):
plt.subplot(2, 3, 1)
plt.cla()
plt.plot(loss_list)
for batch_series_idx in range(5):
one_hot_output_series = np.array(predictions_series)[:, batch_series_idx, :]
single_output_series = np.array([(1 if out[0] < 0.5 else 0) for out in one_hot_output_series])
plt.subplot(2, 3, batch_series_idx + 2)
plt.cla()
plt.axis([0, truncated_backprop_length, 0, 2])
left_offset = range(truncated_backprop_length)
plt.bar(left_offset, batchX[batch_series_idx, :], width=1, color="blue")
plt.bar(left_offset, batchY[batch_series_idx, :] * 0.5, width=1, color="red")
plt.bar(left_offset, single_output_series * 0.3, width=1, color="green")
plt.draw()
plt.pause(0.0001)
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
plt.ion()
plt.figure()
plt.show()
loss_list = []
for epoch_idx in range(num_epochs):
x,y = generateData()
_current_state = np.zeros((batch_size, state_size))
print("New data, epoch", epoch_idx)
for batch_idx in range(num_batches):
start_idx = batch_idx * truncated_backprop_length
end_idx = start_idx + truncated_backprop_length
batchX = x[:,start_idx:end_idx]
batchY = y[:,start_idx:end_idx]
_total_loss, _train_step, _current_state, _predictions_series = sess.run(
[total_loss, train_step, current_state, predictions_series],
feed_dict={
batchX_placeholder:batchX,
batchY_placeholder:batchY,
init_state:_current_state
})
loss_list.append(_total_loss)
if batch_idx%100 == 0:
print("Step",batch_idx, "Loss", _total_loss)
plot(loss_list, _predictions_series, batchX, batchY)
plt.ioff()
plt.show()
參考文獻: