tf.nn.max_pool()

概述

max pooling是CNN當中的最大值池化操作,其實用法和卷積很類似

說明

tf.nn.max_pool(value, ksize, strides, padding, name=None)

參數

  • value:需要池化的輸入,一般池化層接在卷積層后面,所以輸入通常是feature map,依然是[batch, height, width, channels]這樣的shape
  • ksize:池化窗口的大小,取一個四維向量,一般是[1, height, width, 1],因為我們不想在batch和channels上做池化,所以這兩個維度設為了1
  • strides:和卷積類似,窗口在每一個維度上滑動的步長,一般也是[1, stride,stride, 1]
  • padding:和卷積類似,可以取'VALID' 或者'SAME'
  • use_cudnn_on_gpu:bool類型,是否使用cudnn加速,默認為true
  • name:指定該操作的name

返回

返回一個Tensor,類型不變,shape仍然是[batch, height, width, channels]這種形式

實例

示例源碼:
假設有這樣一張圖,雙通道
通道1



通道2



用程序去做最大值池化:
import tensorflow as tf

a = tf.constant([[
            [[1., 17.],
             [2., 18.], 
             [3., 19.],
             [4., 20.]],
            [[5., 21.],
             [6., 22.],
             [7., 23.],
             [8., 24.]],
            [[9., 25.],
             [10., 26.],
             [11., 27.],
             [12., 28.]],
            [[13., 29.],
             [14., 30.],
             [15., 31.],
             [16., 32.]]
        ]])
pooling = tf.nn.max_pool(a, [1, 2, 2, 1], [1, 1, 1, 1], padding='VALID')
with tf.Session() as sess:
    print('image: ')
    print(sess.run(a))
    print('\n')
    print('result: ')
    print(sess.run(pooling))

image:
[[[[ 1. 17.]
[ 2. 18.]
[ 3. 19.]
[ 4. 20.]]

[[ 5. 21.]
[ 6. 22.]
[ 7. 23.]
[ 8. 24.]]

[[ 9. 25.]
[ 10. 26.]
[ 11. 27.]
[ 12. 28.]]

[[ 13. 29.]
[ 14. 30.]
[ 15. 31.]
[ 16. 32.]]]]

result:
[[[[ 6. 22.]
[ 7. 23.]
[ 8. 24.]]

[[ 10. 26.]
[ 11. 27.]
[ 12. 28.]]

[[ 14. 30.]
[ 15. 31.]
[ 16. 32.]]]]

通道1

通道2


可以改變步長

pooling = tf.nn.max_pool(a, [1, 2, 2, 1], [1, 2, 2, 1], padding='VALID')

輸出結果:
result:
[[[[ 6. 22.]
[ 8. 24.]]

[[ 14. 30.]
[ 16. 32.]]]]

通道1

通道2


最后編輯于
?著作權歸作者所有,轉載或內容合作請聯系作者
平臺聲明:文章內容(如有圖片或視頻亦包括在內)由作者上傳并發布,文章內容僅代表作者本人觀點,簡書系信息發布平臺,僅提供信息存儲服務。
  • 序言:七十年代末,一起剝皮案震驚了整個濱河市,隨后出現的幾起案子,更是在濱河造成了極大的恐慌,老刑警劉巖,帶你破解...
    沈念sama閱讀 229,517評論 6 539
  • 序言:濱河連續發生了三起死亡事件,死亡現場離奇詭異,居然都是意外死亡,警方通過查閱死者的電腦和手機,發現死者居然都...
    沈念sama閱讀 99,087評論 3 423
  • 文/潘曉璐 我一進店門,熙熙樓的掌柜王于貴愁眉苦臉地迎上來,“玉大人,你說我怎么就攤上這事。” “怎么了?”我有些...
    開封第一講書人閱讀 177,521評論 0 382
  • 文/不壞的土叔 我叫張陵,是天一觀的道長。 經常有香客問我,道長,這世上最難降的妖魔是什么? 我笑而不...
    開封第一講書人閱讀 63,493評論 1 316
  • 正文 為了忘掉前任,我火速辦了婚禮,結果婚禮上,老公的妹妹穿的比我還像新娘。我一直安慰自己,他們只是感情好,可當我...
    茶點故事閱讀 72,207評論 6 410
  • 文/花漫 我一把揭開白布。 她就那樣靜靜地躺著,像睡著了一般。 火紅的嫁衣襯著肌膚如雪。 梳的紋絲不亂的頭發上,一...
    開封第一講書人閱讀 55,603評論 1 325
  • 那天,我揣著相機與錄音,去河邊找鬼。 笑死,一個胖子當著我的面吹牛,可吹牛的內容都是我干的。 我是一名探鬼主播,決...
    沈念sama閱讀 43,624評論 3 444
  • 文/蒼蘭香墨 我猛地睜開眼,長吁一口氣:“原來是場噩夢啊……” “哼!你這毒婦竟也來了?” 一聲冷哼從身側響起,我...
    開封第一講書人閱讀 42,813評論 0 289
  • 序言:老撾萬榮一對情侶失蹤,失蹤者是張志新(化名)和其女友劉穎,沒想到半個月后,有當地人在樹林里發現了一具尸體,經...
    沈念sama閱讀 49,364評論 1 335
  • 正文 獨居荒郊野嶺守林人離奇死亡,尸身上長有42處帶血的膿包…… 初始之章·張勛 以下內容為張勛視角 年9月15日...
    茶點故事閱讀 41,110評論 3 356
  • 正文 我和宋清朗相戀三年,在試婚紗的時候發現自己被綠了。 大學時的朋友給我發了我未婚夫和他白月光在一起吃飯的照片。...
    茶點故事閱讀 43,305評論 1 371
  • 序言:一個原本活蹦亂跳的男人離奇死亡,死狀恐怖,靈堂內的尸體忽然破棺而出,到底是詐尸還是另有隱情,我是刑警寧澤,帶...
    沈念sama閱讀 38,874評論 5 362
  • 正文 年R本政府宣布,位于F島的核電站,受9級特大地震影響,放射性物質發生泄漏。R本人自食惡果不足惜,卻給世界環境...
    茶點故事閱讀 44,532評論 3 348
  • 文/蒙蒙 一、第九天 我趴在偏房一處隱蔽的房頂上張望。 院中可真熱鬧,春花似錦、人聲如沸。這莊子的主人今日做“春日...
    開封第一講書人閱讀 34,953評論 0 28
  • 文/蒼蘭香墨 我抬頭看了看天上的太陽。三九已至,卻和暖如春,著一層夾襖步出監牢的瞬間,已是汗流浹背。 一陣腳步聲響...
    開封第一講書人閱讀 36,209評論 1 291
  • 我被黑心中介騙來泰國打工, 沒想到剛下飛機就差點兒被人妖公主榨干…… 1. 我叫王不留,地道東北人。 一個月前我還...
    沈念sama閱讀 52,033評論 3 396
  • 正文 我出身青樓,卻偏偏與公主長得像,于是被迫代替她去往敵國和親。 傳聞我的和親對象是個殘疾皇子,可洞房花燭夜當晚...
    茶點故事閱讀 48,268評論 2 375

推薦閱讀更多精彩內容