Flink 學習 —— 自定義 Data Source

準備工作

首先你需要安裝好了 FLink 和 Kafka 。
運行啟動 Flink、Zookepeer、Kafka,


image.png

image.png

image.png

好了,都啟動了!

  • maven依賴
<groupId>com.bai</groupId>
    <artifactId>flink-demo</artifactId>
    <version>1.0-SNAPSHOT</version>

    <properties>
        <compiler.version>1.8</compiler.version>
        <flink.version>1.8.0</flink.version>
        <java.version>1.8</java.version>
        <scala.binary.version>2.11</scala.binary.version>

        <maven.compiler.source>1.8</maven.compiler.source>
        <maven.compiler.target>1.8</maven.compiler.target>
        <project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
    </properties>


    <dependencies>
        <!--flink java-->
        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-java</artifactId>
            <version>${flink.version}</version>
        </dependency>
        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-streaming-java_${scala.binary.version}</artifactId>
            <version>${flink.version}</version>
        </dependency>
        <!--日志-->
        <dependency>
            <groupId>org.slf4j</groupId>
            <artifactId>slf4j-log4j12</artifactId>
            <version>1.7.7</version>
            <scope>runtime</scope>
        </dependency>
        <dependency>
            <groupId>log4j</groupId>
            <artifactId>log4j</artifactId>
            <version>1.2.17</version>
            <scope>runtime</scope>
        </dependency>
        <!--flink kafka connector-->
        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-connector-kafka-0.11_${scala.binary.version}</artifactId>
            <version>${flink.version}</version>
        </dependency>
        <!--alibaba fastjson-->
        <dependency>
            <groupId>com.alibaba</groupId>
            <artifactId>fastjson</artifactId>
            <version>1.2.51</version>
        </dependency>

        <dependency>
            <groupId>org.projectlombok</groupId>
            <artifactId>lombok</artifactId>
            <version>1.18.8</version>
        </dependency>

    </dependencies>
  • 實體類
package com.baiyu.flink.model;


import lombok.*;

import java.util.Map;

/**
 * Desc:
 * auth: baiyu
 */
@Getter
@Setter
@ToString
@NoArgsConstructor
@AllArgsConstructor
public class Metric {
    public String name;
    public long timestamp;
    public Map<String, Object> fields;
    public Map<String, String> tags;

}

往 kafka 中寫數據工具類:KafkaUtils.java

package com.baiyu.flink.utils;

import com.alibaba.fastjson.JSON;
import com.baiyu.flink.model.Metric;
import org.apache.kafka.clients.producer.KafkaProducer;
import org.apache.kafka.clients.producer.ProducerRecord;

import java.util.HashMap;
import java.util.Map;
import java.util.Properties;

/**
 * auth: baiyu
 * 往kafka中寫數據
 * 可以使用這個main函數進行測試一下
 */
public class KafkaUtils {
    public static final String broker_list = "localhost:9092";
    public static final String topic = "metric";  // kafka topic,Flink 程序中需要和這個統一

    public static void writeToKafka() throws InterruptedException {
        Properties props = new Properties();
        props.put("bootstrap.servers", broker_list);
        props.put("key.serializer", "org.apache.kafka.common.serialization.StringSerializer"); //key 序列化
        props.put("value.serializer", "org.apache.kafka.common.serialization.StringSerializer"); //value 序列化
        KafkaProducer producer = new KafkaProducer<String, String>(props);

        Metric metric = new Metric();
        metric.setTimestamp(System.currentTimeMillis());
        metric.setName("mem");
        Map<String, String> tags = new HashMap<>();
        Map<String, Object> fields = new HashMap<>();

        tags.put("cluster", "baiyu");
        tags.put("host_ip", "10.211.55.2");

        fields.put("used_percent", 95d);
        fields.put("max", 27244873d);
        fields.put("used", 17244873d);
        fields.put("init", 27244873d);

        metric.setTags(tags);
        metric.setFields(fields);

        ProducerRecord record = new ProducerRecord<String, String>(topic, null, null, JSON.toJSONString(metric));
        producer.send(record);
        System.out.println("發送數據=>: " + JSON.toJSONString(metric));

        producer.flush();
    }

    public static void main(String[] args) throws InterruptedException {
        while (true) {
            Thread.sleep(300);
            writeToKafka();
        }
    }
}

運行:


image.png

如果出現如上圖標記的,即代表能夠不斷的往 kafka 發送數據的。

FLINK程序

package com.baiyu.flink;

import org.apache.flink.api.common.serialization.SimpleStringSchema;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.connectors.kafka.FlinkKafkaConsumer011;

import java.util.Properties;

/**
 * Desc:
 * auth: baiyu
 */
public class Main {
    public static void main(String[] args) throws Exception {
        final StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();

        Properties props = new Properties();
        props.put("bootstrap.servers", "localhost:9092");
        props.put("zookeeper.connect", "localhost:2181");
        props.put("group.id", "metric-group");
        props.put("key.deserializer", "org.apache.kafka.common.serialization.StringDeserializer");  //key 反序列化
        props.put("value.deserializer", "org.apache.kafka.common.serialization.StringDeserializer");
        props.put("auto.offset.reset", "latest"); //value 反序列化

        DataStreamSource<String> dataStreamSource = env.addSource(new FlinkKafkaConsumer011<>(
                "metric",  //kafka topic
                new SimpleStringSchema(),  // String 序列化
                props)).setParallelism(1);

        dataStreamSource.print(); //把從 kafka 讀取到的數據打印在控制臺

        env.execute("Flink add data source");
    }
}

運行起來(剛才發送的程序需要啟動狀態):


image.png

看到沒程序,Flink 程序控制臺能夠源源不斷的打印數據呢。

自定義source

上面就是 Flink 自帶的 Kafka source,那么接下來就模仿著寫一個從 MySQL 中讀取數據的 Source。
首先 pom.xml 中添加 MySQL 依賴:

        <dependency>
            <groupId>mysql</groupId>
            <artifactId>mysql-connector-java</artifactId>
            <version>8.0.16</version>
        </dependency>

數據庫建表如下:

DROP TABLE IF EXISTS `Student`;
CREATE TABLE `Student` (
  `id` int(11) unsigned NOT NULL AUTO_INCREMENT,
  `name` varchar(25) COLLATE utf8_bin DEFAULT NULL,
  `password` varchar(25) COLLATE utf8_bin DEFAULT NULL,
  `age` int(10) DEFAULT NULL,
  PRIMARY KEY (`id`)
) ENGINE=InnoDB AUTO_INCREMENT=5 DEFAULT CHARSET=utf8 COLLATE=utf8_bin;

插入數據:

INSERT INTO `Student` VALUES ('1', 'zhisheng01', '123456', '18'), ('2', 'zhisheng02', '123', '17'), ('3', 'zhisheng03', '1234', '18'), ('4', 'zhisheng04', '12345', '16');
COMMIT;

新建實體類:Student.java

package com.baiyu.flink.model;

import lombok.*;

/**
 * Desc:
 * auth: baiyu
 */

@Setter
@Getter
@ToString
@NoArgsConstructor
@AllArgsConstructor
public class Student {
    public int id;
    public String name;
    public String password;
    public int age;

}

新建 Source 類 SourceFromMySQL.java,該類繼承 RichSourceFunction ,實現里面的 open、close、run、cancel 方法:

package com.baiyu.flink.source;

import com.baiyu.flink.model.Student;
import org.apache.flink.configuration.Configuration;
import org.apache.flink.streaming.api.functions.source.RichSourceFunction;
import org.apache.flink.streaming.api.functions.source.SourceFunction;

import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.PreparedStatement;
import java.sql.ResultSet;


/**
 * Desc:
 * auth: baiyu
 */
public class SourceFromMySQL extends RichSourceFunction<Student> {

    PreparedStatement ps;
    private Connection connection;

    /**
     * open() 方法中建立連接,這樣不用每次 invoke 的時候都要建立連接和釋放連接。
     *
     * @param parameters
     * @throws Exception
     */
    @Override
    public void open(Configuration parameters) throws Exception {
        super.open(parameters);
        connection = getConnection();
        String sql = "select * from Student;";
        ps = this.connection.prepareStatement(sql);
    }

    /**
     * 程序執行完畢就可以進行,關閉連接和釋放資源的動作了
     *
     * @throws Exception
     */
    @Override
    public void close() throws Exception {
        super.close();
        if (connection != null) { //關閉連接和釋放資源
            connection.close();
        }
        if (ps != null) {
            ps.close();
        }
    }

    /**
     * DataStream 調用一次 run() 方法用來獲取數據
     *
     * @param ctx
     * @throws Exception
     */
    @Override
    public void run(SourceContext<Student> ctx) throws Exception {
        ResultSet resultSet = ps.executeQuery();
        while (resultSet.next()) {
            Student1 student = new Student(
                    resultSet.getInt("id"),
                    resultSet.getString("name").trim(),
                    resultSet.getString("password").trim(),
                    resultSet.getInt("age"));
            ctx.collect(student);
        }
    }

    @Override
    public void cancel() {
    }

    private static Connection getConnection() {
        Connection con = null;
        try {
            con = DriverManager.getConnection("jdbc:mysql://localhost:3306/baiyu?useUnicode=true&characterEncoding=UTF-8", "user", "root");
        } catch (Exception e) {
            System.out.println("-----------mysql get connection has exception , msg = "+ e.getMessage());
        }
        return con;
    }
}

Flink 程序:

package com.baiyu.flink;

import com.baiyu.flink.source.SourceFromMySQL;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;

/**
 * Desc:
 * auth: baiyu
 */
public class FlinkMain {
    public static void main(String[] args) throws Exception {
        final StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();

        env.addSource(new SourceFromMySQL()).print();

        env.execute("Flink add data sourc");
    }
}

運行 Flink 程序,控制臺日志中可以看見打印的 student 信息。


image.png
  • RichSourceFunction
    從上面自定義的 Source 可以看到我們繼承的就是這個 RichSourceFunction 類,那么來了解一下:
    image.png

    一個抽象類,繼承自 AbstractRichFunction。為實現一個 Rich SourceFunction 提供基礎能力。該類的子類有三個,兩個是抽象類,在此基礎上提供了更具體的實現,另一個是 ContinuousFileMonitoringFunction。
    image.png
  • MessageAcknowledgingSourceBase :它針對的是數據源是消息隊列的場景并且提供了基于 ID 的應答機制。
  • MultipleIdsMessageAcknowledgingSourceBase : 在 MessageAcknowledgingSourceBase 的基礎上針對 ID 應答機制進行了更為細分的處理,支持兩種 ID 應答模型:session id 和 unique message id。
  • ContinuousFileMonitoringFunction:這是單個(非并行)監視任務,它接受 FileInputFormat,并且根據 FileProcessingMode 和 FilePathFilter,它負責監視用戶提供的路徑;決定應該進一步讀取和處理哪些文件;創建與這些文件對應的 FileInputSplit 拆分,將它們分配給下游任務以進行進一步處理。

寫在最后

本文主要講了下 Flink 使用 Kafka Source 的使用,并提供了一個 demo 教大家如何自定義 Source,從 MySQL 中讀取數據,當然你也可以從其他地方讀取,實現自己的數據源 source。可能平時工作會比這個更復雜,需要大家靈活應對!

?著作權歸作者所有,轉載或內容合作請聯系作者
平臺聲明:文章內容(如有圖片或視頻亦包括在內)由作者上傳并發布,文章內容僅代表作者本人觀點,簡書系信息發布平臺,僅提供信息存儲服務。

推薦閱讀更多精彩內容