準備工作
首先你需要安裝好了 FLink 和 Kafka 。
運行啟動 Flink、Zookepeer、Kafka,
image.png
image.png
image.png
好了,都啟動了!
- maven依賴
<groupId>com.bai</groupId>
<artifactId>flink-demo</artifactId>
<version>1.0-SNAPSHOT</version>
<properties>
<compiler.version>1.8</compiler.version>
<flink.version>1.8.0</flink.version>
<java.version>1.8</java.version>
<scala.binary.version>2.11</scala.binary.version>
<maven.compiler.source>1.8</maven.compiler.source>
<maven.compiler.target>1.8</maven.compiler.target>
<project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
</properties>
<dependencies>
<!--flink java-->
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-java</artifactId>
<version>${flink.version}</version>
</dependency>
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-streaming-java_${scala.binary.version}</artifactId>
<version>${flink.version}</version>
</dependency>
<!--日志-->
<dependency>
<groupId>org.slf4j</groupId>
<artifactId>slf4j-log4j12</artifactId>
<version>1.7.7</version>
<scope>runtime</scope>
</dependency>
<dependency>
<groupId>log4j</groupId>
<artifactId>log4j</artifactId>
<version>1.2.17</version>
<scope>runtime</scope>
</dependency>
<!--flink kafka connector-->
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-connector-kafka-0.11_${scala.binary.version}</artifactId>
<version>${flink.version}</version>
</dependency>
<!--alibaba fastjson-->
<dependency>
<groupId>com.alibaba</groupId>
<artifactId>fastjson</artifactId>
<version>1.2.51</version>
</dependency>
<dependency>
<groupId>org.projectlombok</groupId>
<artifactId>lombok</artifactId>
<version>1.18.8</version>
</dependency>
</dependencies>
- 實體類
package com.baiyu.flink.model;
import lombok.*;
import java.util.Map;
/**
* Desc:
* auth: baiyu
*/
@Getter
@Setter
@ToString
@NoArgsConstructor
@AllArgsConstructor
public class Metric {
public String name;
public long timestamp;
public Map<String, Object> fields;
public Map<String, String> tags;
}
往 kafka 中寫數據工具類:KafkaUtils.java
package com.baiyu.flink.utils;
import com.alibaba.fastjson.JSON;
import com.baiyu.flink.model.Metric;
import org.apache.kafka.clients.producer.KafkaProducer;
import org.apache.kafka.clients.producer.ProducerRecord;
import java.util.HashMap;
import java.util.Map;
import java.util.Properties;
/**
* auth: baiyu
* 往kafka中寫數據
* 可以使用這個main函數進行測試一下
*/
public class KafkaUtils {
public static final String broker_list = "localhost:9092";
public static final String topic = "metric"; // kafka topic,Flink 程序中需要和這個統一
public static void writeToKafka() throws InterruptedException {
Properties props = new Properties();
props.put("bootstrap.servers", broker_list);
props.put("key.serializer", "org.apache.kafka.common.serialization.StringSerializer"); //key 序列化
props.put("value.serializer", "org.apache.kafka.common.serialization.StringSerializer"); //value 序列化
KafkaProducer producer = new KafkaProducer<String, String>(props);
Metric metric = new Metric();
metric.setTimestamp(System.currentTimeMillis());
metric.setName("mem");
Map<String, String> tags = new HashMap<>();
Map<String, Object> fields = new HashMap<>();
tags.put("cluster", "baiyu");
tags.put("host_ip", "10.211.55.2");
fields.put("used_percent", 95d);
fields.put("max", 27244873d);
fields.put("used", 17244873d);
fields.put("init", 27244873d);
metric.setTags(tags);
metric.setFields(fields);
ProducerRecord record = new ProducerRecord<String, String>(topic, null, null, JSON.toJSONString(metric));
producer.send(record);
System.out.println("發送數據=>: " + JSON.toJSONString(metric));
producer.flush();
}
public static void main(String[] args) throws InterruptedException {
while (true) {
Thread.sleep(300);
writeToKafka();
}
}
}
運行:
image.png
如果出現如上圖標記的,即代表能夠不斷的往 kafka 發送數據的。
FLINK程序
package com.baiyu.flink;
import org.apache.flink.api.common.serialization.SimpleStringSchema;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.connectors.kafka.FlinkKafkaConsumer011;
import java.util.Properties;
/**
* Desc:
* auth: baiyu
*/
public class Main {
public static void main(String[] args) throws Exception {
final StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
Properties props = new Properties();
props.put("bootstrap.servers", "localhost:9092");
props.put("zookeeper.connect", "localhost:2181");
props.put("group.id", "metric-group");
props.put("key.deserializer", "org.apache.kafka.common.serialization.StringDeserializer"); //key 反序列化
props.put("value.deserializer", "org.apache.kafka.common.serialization.StringDeserializer");
props.put("auto.offset.reset", "latest"); //value 反序列化
DataStreamSource<String> dataStreamSource = env.addSource(new FlinkKafkaConsumer011<>(
"metric", //kafka topic
new SimpleStringSchema(), // String 序列化
props)).setParallelism(1);
dataStreamSource.print(); //把從 kafka 讀取到的數據打印在控制臺
env.execute("Flink add data source");
}
}
運行起來(剛才發送的程序需要啟動狀態):
image.png
看到沒程序,Flink 程序控制臺能夠源源不斷的打印數據呢。
自定義source
上面就是 Flink 自帶的 Kafka source,那么接下來就模仿著寫一個從 MySQL 中讀取數據的 Source。
首先 pom.xml 中添加 MySQL 依賴:
<dependency>
<groupId>mysql</groupId>
<artifactId>mysql-connector-java</artifactId>
<version>8.0.16</version>
</dependency>
數據庫建表如下:
DROP TABLE IF EXISTS `Student`;
CREATE TABLE `Student` (
`id` int(11) unsigned NOT NULL AUTO_INCREMENT,
`name` varchar(25) COLLATE utf8_bin DEFAULT NULL,
`password` varchar(25) COLLATE utf8_bin DEFAULT NULL,
`age` int(10) DEFAULT NULL,
PRIMARY KEY (`id`)
) ENGINE=InnoDB AUTO_INCREMENT=5 DEFAULT CHARSET=utf8 COLLATE=utf8_bin;
插入數據:
INSERT INTO `Student` VALUES ('1', 'zhisheng01', '123456', '18'), ('2', 'zhisheng02', '123', '17'), ('3', 'zhisheng03', '1234', '18'), ('4', 'zhisheng04', '12345', '16');
COMMIT;
新建實體類:Student.java
package com.baiyu.flink.model;
import lombok.*;
/**
* Desc:
* auth: baiyu
*/
@Setter
@Getter
@ToString
@NoArgsConstructor
@AllArgsConstructor
public class Student {
public int id;
public String name;
public String password;
public int age;
}
新建 Source 類 SourceFromMySQL.java,該類繼承 RichSourceFunction ,實現里面的 open、close、run、cancel 方法:
package com.baiyu.flink.source;
import com.baiyu.flink.model.Student;
import org.apache.flink.configuration.Configuration;
import org.apache.flink.streaming.api.functions.source.RichSourceFunction;
import org.apache.flink.streaming.api.functions.source.SourceFunction;
import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
/**
* Desc:
* auth: baiyu
*/
public class SourceFromMySQL extends RichSourceFunction<Student> {
PreparedStatement ps;
private Connection connection;
/**
* open() 方法中建立連接,這樣不用每次 invoke 的時候都要建立連接和釋放連接。
*
* @param parameters
* @throws Exception
*/
@Override
public void open(Configuration parameters) throws Exception {
super.open(parameters);
connection = getConnection();
String sql = "select * from Student;";
ps = this.connection.prepareStatement(sql);
}
/**
* 程序執行完畢就可以進行,關閉連接和釋放資源的動作了
*
* @throws Exception
*/
@Override
public void close() throws Exception {
super.close();
if (connection != null) { //關閉連接和釋放資源
connection.close();
}
if (ps != null) {
ps.close();
}
}
/**
* DataStream 調用一次 run() 方法用來獲取數據
*
* @param ctx
* @throws Exception
*/
@Override
public void run(SourceContext<Student> ctx) throws Exception {
ResultSet resultSet = ps.executeQuery();
while (resultSet.next()) {
Student1 student = new Student(
resultSet.getInt("id"),
resultSet.getString("name").trim(),
resultSet.getString("password").trim(),
resultSet.getInt("age"));
ctx.collect(student);
}
}
@Override
public void cancel() {
}
private static Connection getConnection() {
Connection con = null;
try {
con = DriverManager.getConnection("jdbc:mysql://localhost:3306/baiyu?useUnicode=true&characterEncoding=UTF-8", "user", "root");
} catch (Exception e) {
System.out.println("-----------mysql get connection has exception , msg = "+ e.getMessage());
}
return con;
}
}
Flink 程序:
package com.baiyu.flink;
import com.baiyu.flink.source.SourceFromMySQL;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
/**
* Desc:
* auth: baiyu
*/
public class FlinkMain {
public static void main(String[] args) throws Exception {
final StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
env.addSource(new SourceFromMySQL()).print();
env.execute("Flink add data sourc");
}
}
運行 Flink 程序,控制臺日志中可以看見打印的 student 信息。
image.png
-
RichSourceFunction
從上面自定義的 Source 可以看到我們繼承的就是這個 RichSourceFunction 類,那么來了解一下:
image.png
一個抽象類,繼承自 AbstractRichFunction。為實現一個 Rich SourceFunction 提供基礎能力。該類的子類有三個,兩個是抽象類,在此基礎上提供了更具體的實現,另一個是 ContinuousFileMonitoringFunction。
image.png - MessageAcknowledgingSourceBase :它針對的是數據源是消息隊列的場景并且提供了基于 ID 的應答機制。
- MultipleIdsMessageAcknowledgingSourceBase : 在 MessageAcknowledgingSourceBase 的基礎上針對 ID 應答機制進行了更為細分的處理,支持兩種 ID 應答模型:session id 和 unique message id。
- ContinuousFileMonitoringFunction:這是單個(非并行)監視任務,它接受 FileInputFormat,并且根據 FileProcessingMode 和 FilePathFilter,它負責監視用戶提供的路徑;決定應該進一步讀取和處理哪些文件;創建與這些文件對應的 FileInputSplit 拆分,將它們分配給下游任務以進行進一步處理。
寫在最后
本文主要講了下 Flink 使用 Kafka Source 的使用,并提供了一個 demo 教大家如何自定義 Source,從 MySQL 中讀取數據,當然你也可以從其他地方讀取,實現自己的數據源 source。可能平時工作會比這個更復雜,需要大家靈活應對!