ChatGPT編程秀-2:最小元素的設(shè)計(jì)

膨脹的野心與現(xiàn)實(shí)的窘境

上一節(jié)隨著我能抓openai的列表之后,我的野心開始膨脹,既然我們寫了一個框架,可以開始寫面向各網(wǎng)站的爬蟲了,為什么只面向ChatGPT呢?幾乎所有的平臺都是這么個模式,一個列表,然后逐個抓取。那我能不能把這個能力泛化呢?可不可以設(shè)計(jì)一套機(jī)制,讓所有的抓取功能都變得很簡單呢?我抽取一系列的基礎(chǔ)能力,而不管抓哪個網(wǎng)站只需要復(fù)用這些能力就可以快速的開發(fā)出爬蟲。公司內(nèi)的各種平臺都是這么想的對吧?

那么我們就需要進(jìn)行設(shè)計(jì)建模,如果按照正常的面向?qū)ο螅铱赡軙@么設(shè)計(jì)建模:


02-01-traditional-design.png

看起來很美好不是嗎?是不是可以按照設(shè)計(jì)去寫代碼了?其實(shí)完全是扯淡,魔鬼隱藏在細(xì)節(jié)中,每個網(wǎng)站都有各種復(fù)雜的HTML、他們可能是簡單的列表,也可能是存在好幾個iframe,而且你在界面上看到的列表和你真正點(diǎn)開的又不一樣,比如說:

  • 有的小說網(wǎng)站,它的列表上假如有N個列表項(xiàng),但是你真的點(diǎn)擊去之后,你會發(fā)現(xiàn)有的章節(jié)點(diǎn)擊他只有一半內(nèi)容,再點(diǎn)下一頁的時候它會調(diào)到一個不在列表頁上的展示的頁面,展示后半段內(nèi)容,而你如果只根據(jù)列表鏈接去抓,你會丟掉這后半段內(nèi)容。
  • 有的網(wǎng)站會在你點(diǎn)了幾個頁面后隨機(jī)出現(xiàn)一個按鈕,點(diǎn)擊了才能展開后續(xù)內(nèi)容,防止機(jī)器抓取。你不處理這種情況,直接去抓就抓不全。
  • 而有的網(wǎng)站根本就是圖片展示文本內(nèi)容,你得把圖片搞下來,然后OCR識別,或者插入了各種看不見的文本需要被清洗掉。
  • 而且每個網(wǎng)站還會升級換代,他們一升級換代,你的抓取方式也要跟著變。
    等等等等……而且所有這些要素之間還可以排列組合:
    [圖片上傳中...(02-03-primary-element-sketch.png-e750d8-1679132382630-0)]
02-02-change-points.png

所以最上面的那個建模只能說過于簡化而沒有用處,起碼,以前是這樣的。

在以前,我們可能會進(jìn)一步完善這個設(shè)計(jì),得到一系列復(fù)雜的內(nèi)部子概念、子機(jī)制、子策略,比如:

  • 反防抓機(jī)制
  • 詳情分頁抓取策略
  • 清洗機(jī)制

然后對這些機(jī)制進(jìn)行組合。

然而這并不會讓問題變簡單,人們總是低估膠水代碼的復(fù)雜度,最終要么整個體系非常脆弱,要么就從膠水處開始腐化。

新時代,新思路

那么在今天,我們有沒有什么新的做法呢?我們從一個代碼示例開始講起,比如,我這里有一個抓取某小說網(wǎng)站的代碼:

const fs = require('fs/promises');

async function main() {
    const novel_section_list_url = 'https://example.com/list-1234.html';
    await driver.goto(novel_section_list_url);

    const novelSections = await driver.evaluate(() => {
        let title = getNovelTitle(document)
        let section_list = getNovelSectionList(document);

        return {
            title, section_list
        }

        function getNovelTitle(document) {
            return document.querySelector("h1.index_title").textContent;
        }
        function getNovelSectionList(document) {
            let result = [];
            document.querySelectorAll("ul.section_list>li>a").forEach(item => {
                const { href } = item;
                const name = item.textContent;
                result.push({ href, name });
            });
            return result;
        }
    });
    console.log(novelSections.section_list.length);
    const batchSize = 50;

    const title = novelSections.title;
    let section_list = novelSections.section_list;
    if (intention.part_fetch) {
        section_list = novelSections.section_list.slice(600, 750);
    }

    await batchProcess(section_list, batchSize, async (one_batch, batchNumber) => {
        await download_one_batch_novel_content(one_batch, driver);

        async function download_one_batch_novel_content(one_batch, driver) {
            let one_text_file_content = "";
            for (section of one_batch) {
                await driver.goto(section.href);
                await driver.waitForTimeout(3000);
                const section_text = await driver.evaluate(() => {
                    return "\n\n" + document.querySelector("h1.chapter_title").textContent
                        + "\n"
                        + document.querySelector("#chapter_content").textContent;

                });
                one_text_file_content += section_text;
            }
            await fs.writeFile(`./output/example/${title}-${batchNumber}.txt`, one_text_file_content);
        }
    });
}

main().then(() => { });

async function batchProcess(list, batchSize, asyncFn) {
    const listCopy = [...list];
    const batches = [];
    while (listCopy.length > 0) {
        batches.push(listCopy.splice(0, batchSize));
    }
    let batchNumber = 12;
    for (const batch of batches) {
        await asyncFn(batch, batchNumber);
        batchNumber++;
    }
}

在實(shí)際工作中這樣的代碼應(yīng)該是比較常見的,由于上述的設(shè)計(jì)沒有什么用處,我們經(jīng)常見到的就是另一個極端,那就是代碼寫的過于隨意,整個代碼的實(shí)現(xiàn)變得無法閱讀,當(dāng)我想要做稍微地調(diào)整,比如說我昨天抓了100個,今天接著從101個往后抓,就要去讀代碼,然后從代碼中看改點(diǎn)什么好讓這個抓取可以從101往后抓。

那在以前呢,我們就要像上面說的要設(shè)計(jì)比較精密的機(jī)制,而越是精密的機(jī)制,就越不健壯。而且,以我的經(jīng)驗(yàn),你想讓人們使用那么精細(xì)的機(jī)制也不好辦,因?yàn)榇蠖鄶?shù)人的能力并不足以駕馭精細(xì)的機(jī)制。

而在今天,我們可以做的更粗放一些。

首先,我們意識到有些代碼,準(zhǔn)確的說,是有些變量,是我們經(jīng)常修改的,所以我們在不改變整體結(jié)構(gòu)的情況下,我們把這些變量提到上面去,變成一個變量:


//意圖描述
const intention = {
    list_url:'https://example.com/list-1234.html',
    batchSize: 50,
    batchStart: 12,
    page_waiting_time: 3000,
    part_fetch:{ //如果全抓取,就注釋掉整個part_fetch屬性
        from:600,//不含該下標(biāo)
        to:750
    },
    output_folder: "./output/example"
}

const fs = require('fs/promises');
const driver = require('../util/driver.js');


async function main() {


    const novel_section_list_url = intention.list_url;
    await driver.goto(novel_section_list_url);

    const novelSections = await driver.evaluate(() => {

        let title = getNovelTitle(document)
        let section_list = getNovelSectionList(document);

        return {
            title, section_list
        }

        function getNovelTitle(document) {
            return document.querySelector("h1.index_title").textContent;
        }
        function getNovelSectionList(document) {
            let result = [];
            document.querySelectorAll("ul.section_list>li>a").forEach(item => {
                const { href } = item;
                const name = item.textContent;
                result.push({ href, name });
            });
            return result;
        }
    });
    console.log(novelSections.section_list.length);
    const batchSize = intention.batchSize;

    const title = novelSections.title;
    let section_list = novelSections.section_list;
    if (intention.part_fetch) {
        section_list = novelSections.section_list.slice(intention.part_fetch.from, intention.part_fetch.to);
    }

    await batchProcess(section_list, batchSize, async (one_batch, batchNumber) => {
        await download_one_batch_novel_content(one_batch, driver);

        async function download_one_batch_novel_content(one_batch, driver) {
            let one_text_file_content = "";
            for (section of one_batch) {
                await driver.goto(section.href);
                await driver.waitForTimeout(intention.page_waiting_time);
                const section_text = await driver.evaluate(() => {
                    return "\n\n" + document.querySelector("h1.chapter_title").textContent
                        + "\n"
                        + document.querySelector("#chapter_content").textContent;

                });
                one_text_file_content += section_text;
            }
            await fs.writeFile(`${intention.output_folder}/${title}-${batchNumber}.txt`, one_text_file_content); //一個批次一存儲
        }
    });
}

main().then(() => { });

async function batchProcess(list, batchSize, asyncFn) {
    const listCopy = [...list];
    const batches = [];
    while (listCopy.length > 0) {
        batches.push(listCopy.splice(0, batchSize));
    }
    let batchNumber = intention.batchStart;
    for (const batch of batches) {
        await asyncFn(batch, batchNumber);
        batchNumber++;
    }
}

于是我們把程序分成了兩部分結(jié)構(gòu):

02-03-primary-element-sketch.png

接下來我會發(fā)現(xiàn),在網(wǎng)站不變的情況下,下面這個意圖執(zhí)行代碼相當(dāng)?shù)姆€(wěn)定。我經(jīng)常需要做的不管是偏移量的計(jì)算,還是修改抓取目標(biāo)等等,這些都只需要修改上面的意圖描述數(shù)據(jù)結(jié)構(gòu)即可。而且我們可以做進(jìn)一步的封裝,得到下面的代碼(下面的JsDoc也是ChatGPT給我寫的):

/**
 * @typedef {Object} Intention
 * @property {string} list_url
 * @property {integer} batchSize
 * @property {integer} batchStart
 * @property {integer} page_waiting_time
 * @property {PartFetch} part_fetch 如果全抓取,就注釋掉整個part_fetch屬性
 * @property {string} output_folder
 * 
 * @typedef {Object} PartFetch 
 * @property {integer} from 不含該下標(biāo)
 * @property {integer} batchStart
 */

//意圖執(zhí)行
/**
 * @param {Intention} intention
 */
module.exports =  (intention, context) => {
    Object.assign(this, context);
    const {fs,console} = context;
    async function main() {

        const novel_section_list_url = intention.list_url;
        await driver.goto(novel_section_list_url);

        const novelSections = await driver.evaluate(() => {

            let title = getNovelTitle(document)
            let section_list = getNovelSectionList(document);

            return {
                title, section_list
            }

            function getNovelTitle(document) {
                return document.querySelector("h1.index_title").textContent;
            }
            function getNovelSectionList(document) {
                let result = [];
                document.querySelectorAll("ul.section_list>li>a").forEach(item => {
                    const { href } = item;
                    const name = item.textContent;
                    result.push({ href, name });
                });
                return result;
            }
        });
        console.log(novelSections.section_list.length);
        const batchSize = intention.batchSize;

        const title = novelSections.title;
        // const section_list = novelSections.section_list.slice(0, 3);
        let section_list = novelSections.section_list;
        if (intention.part_fetch) {
            section_list = novelSections.section_list.slice(intention.part_fetch.from, intention.part_fetch.to);
        }

        await batchProcess(section_list, batchSize, async (one_batch, batchNumber) => {
            await download_one_batch_novel_content(one_batch, driver);

            async function download_one_batch_novel_content(one_batch, driver) {
                let one_text_file_content = "";
                for (section of one_batch) {
                    await driver.goto(section.href);
                    await driver.waitForTimeout(intention.page_waiting_time);
                    const section_text = await driver.evaluate(() => {
                        return "\n\n" + document.querySelector("h1.chapter_title").textContent
                            + "\n"
                            + document.querySelector("#chapter_content").textContent;

                    });
                    one_text_file_content += section_text;
                }
                await fs.writeFile(`${intention.output_folder}/${title}-${batchNumber}.txt`, one_text_file_content); //一個批次一存儲
            }
        });
    }

    main().then(() => { });

    async function batchProcess(list, batchSize, asyncFn) {
        const listCopy = [...list];
        const batches = [];
        while (listCopy.length > 0) {
            batches.push(listCopy.splice(0, batchSize));
        }
        let batchNumber = intention.batchStart;
        for (const batch of batches) {
            await asyncFn(batch, batchNumber);
            batchNumber++;
        }
    }
}

于是我們就有了一個穩(wěn)定的接口將意圖的描述和意圖的執(zhí)行徹底分離,隨著我對我的代碼進(jìn)行了進(jìn)一步的整理后發(fā)現(xiàn),這個意圖描述結(jié)構(gòu)竟然相當(dāng)?shù)耐ㄓ茫覍懙暮枚嗑W(wǎng)站的抓取代碼竟然都可以抽取出這樣一個結(jié)構(gòu)。
于是我們可以進(jìn)一步抽象,到了一種適用于我特定領(lǐng)域的DSL,類似下面的結(jié)構(gòu):

02-04-extend-by-entrypoint-attribute.png

到此為止,我的意圖描述和意圖執(zhí)行徹底解耦,意圖執(zhí)行變成了意圖描述中的一個屬性,我只需要寫一個引擎,根據(jù)意圖描述中entrypoint的屬性值,加載對應(yīng)的函數(shù),然后將意圖數(shù)據(jù)傳給他就可以了,大概的代碼如下:

const intentionString = await fs.readFile(templatePath, 'utf8');
const intention = yaml.load(intentionString);

const intention_exec = require(intention.entrypoint);

intention_exec(intention, context);

而我們的每一個意圖執(zhí)行的代碼,可以有自己的不同變化原因,不管是網(wǎng)站升級了,還是我們要抓下一個網(wǎng)站了,我們只需要把HTML扔給ChatGPT,他就可以幫我們生成對應(yīng)的意圖執(zhí)行代碼。哪怕我們想基于一些可以復(fù)用庫函數(shù),比如之前說的反防抓、反詳情頁分頁機(jī)制封裝的庫函數(shù),他也可以給我們生成膠水代碼把這些函數(shù)粘起來(具體的手法我們在后續(xù)的文章里講),所有這一切的變化,都可以用ChatGPT生成代碼這一步解決。那么所謂的在膠水層腐化的問題也就不存在了。

很有趣的是,在我基于該結(jié)構(gòu)的DSL得到一組實(shí)例之后,我很快就開始產(chǎn)生了在DSL這一層的新需求,比如:

  • DSL文件的管理需求,因?yàn)槿丝偸呛軕械模椅抑挥袠I(yè)余時間寫點(diǎn)這些東西,不能保證自己一直記得哪個網(wǎng)站對應(yīng)哪個文件,然后怎么設(shè)置。
  • 我還希望能夠根據(jù)我本地已經(jīng)抓的內(nèi)容和智能生成偏移量
  • 我也希望能定時去查看更新然后生成抓取意圖。

這一切都是很有價值的需求,而如果我們沒有一個穩(wěn)定的下層DSL結(jié)構(gòu),我們這些更上層需求也注定是不穩(wěn)定的。

而有了這個穩(wěn)定的DSL結(jié)構(gòu)后,我們回過頭來看我們的設(shè)計(jì),其實(shí)是在更大的尺度上實(shí)現(xiàn)了面向?qū)ο笤O(shè)計(jì)中的開閉原則,盡管擴(kuò)展需要大量的代碼,而這些代碼卻并不需要人來寫,所以效率依然很高。

總結(jié)一下

在這個編程秀里面,我們做了什么?我們并沒有做一個功能,而是面向ChatGPT對我們的代碼進(jìn)行了一個設(shè)計(jì)。

  • 首先,我們分析了傳統(tǒng)的面向?qū)ο蠼7椒ǖ木窒扌裕赋鏊^于簡化且無法解決實(shí)際問題。
  • 接著,我們提出了新時代的新思路,通過將意圖描述和意圖執(zhí)行進(jìn)行解耦,使得某一個場景的開發(fā)變得更加簡單,數(shù)據(jù)結(jié)構(gòu)也更加通用。于是我們得到了在ChatGPT時代編程的最小元素的標(biāo)準(zhǔn)抽象方式:
02-05-primary-emement-structure-local-version.png
  • 最后,我們暢想了一下,在我們得到這種穩(wěn)定的數(shù)據(jù)結(jié)構(gòu)后,我們可以再更上層做更多的開發(fā)工作,而因?yàn)榻涌诤芊€(wěn)定,上層的開發(fā)工作也不至于是在浮沙之上建高塔。

這里想再聊深一點(diǎn),說點(diǎn)半題外話,其實(shí)到這里我們可以看出,我們最一開始抽出來的那個模型,并不是沒有用,只是他在更上層有用。而它把復(fù)雜度壓給了這一層的程序員。這一層的程序員自然是不滿意的。所以所謂的沒有用處其實(shí)是一個抱怨,背后本質(zhì)上是一種勞動者對于被強(qiáng)迫進(jìn)行繁重勞動的不滿。是一種上層的優(yōu)雅和下層的繁重勞動之間的矛盾的體現(xiàn)。這個矛盾是不可調(diào)和的,有人想優(yōu)雅就有人要繁重,而ChatGPT的出現(xiàn)一定程度上轉(zhuǎn)移了這個矛盾,最繁重的工作給了它,使得開發(fā)者原地變成了管理者,變成得“優(yōu)雅”了。這種優(yōu)雅帶來的是好還是壞,我們還不知道,但我們希望是好的。

好的,那么當(dāng)我們有了最小元素的抽象之后,上一篇文章遺留的問題我們只回答了一半,我們還要進(jìn)一步考慮整個系統(tǒng)應(yīng)該怎么設(shè)計(jì)架構(gòu)才能更大限度的發(fā)揮ChatGPT的能力,而這是我們后面的內(nèi)容。

?著作權(quán)歸作者所有,轉(zhuǎn)載或內(nèi)容合作請聯(lián)系作者
平臺聲明:文章內(nèi)容(如有圖片或視頻亦包括在內(nèi))由作者上傳并發(fā)布,文章內(nèi)容僅代表作者本人觀點(diǎn),簡書系信息發(fā)布平臺,僅提供信息存儲服務(wù)。

推薦閱讀更多精彩內(nèi)容