ByteToMessageDecoder
ByteToMessageDecoder是一種ChannelInboundHandler,可以稱為解碼器,負責將byte字節流住(ByteBuf)轉換成一種Message,Message是應用可以自己定義的一種Java對象。
例如應用中使用protobuf協議,則可以將byte轉換為Protobuf對象。然后交給后面的Handler來處理。
使用示例, 下面這段代碼先將收到的數據按照換行符分割成一段一段的,然后將byte轉換成String, 再將String轉換成int, 然后把int加一后寫回。
ServerBootstrap bootstrap = new ServerBootstrap();
EventLoopGroup bossGroup = new NioEventLoopGroup();
EventLoopGroup workerGroup = new NioEventLoopGroup();
try {
bootstrap.channel(NioServerSocketChannel.class)
.handler(new LoggingHandler(LogLevel.DEBUG))
.group(bossGroup, workerGroup)
.childHandler(new ChannelInitializer<SocketChannel>() {
protected void initChannel(SocketChannel ch) throws Exception {
ch.pipeline().addLast(new LineBasedFrameDecoder(1024))
.addLast(new ByteToStringDecoder())
.addLast(new StringToIntegerDecoder())
.addLast(new IntegerToByteEncoder())
.addLast(new IntegerIncHandler());
}
});
ChannelFuture bind = bootstrap.bind(8092);
bind.sync();
bind.channel().closeFuture().sync();
} finally {
bossGroup.shutdownGracefully().sync();
workerGroup.shutdownGracefully().sync();
}
這里的ChannelPipeline的組織結構是
1. ByteToStringDecoder - 將byte轉換成String的Decoder
2. StringToIntegerDecoder - String轉換成Integer對象的Decoder
3. IntegerToByteEncoder - Integer轉換成byte的Encoder
4. IntegerIncHandler - 將接受到的int加一后返回
ByteToStringDecoder
ByteToStringMessageDecoder繼承于ByteToMessageDecoder,并實現了ByteToMessageDecoder的
decode(ChannelHandlerContext ctx, ByteBuf in, java.util.List<java.lang.object style="box-sizing: border-box;"> out)
方法。</java.lang.object>
decode方法實現中要求將ByteBuf中的數據進行解碼然后將解碼后的對象增加到list中
public class ByteToStringDecoder extends ByteToMessageDecoder {
protected void decode(ChannelHandlerContext channelHandlerContext, ByteBuf byteBuf, List<Object> list) throws Exception {
byte[] data = new byte[byteBuf.readableBytes()];
byteBuf.readBytes(data);
list.add(new String(data, StandardCharsets.UTF_8));
}
}
ByteToStringMessageDecoder繼承于ByteToMessageDecoder,并實現了ByteToMessageDecoder的
decode(ChannelHandlerContext ctx, ByteBuf in, java.util.List<java.lang.Object> out)
方法。
decode方法實現中要求將ByteBuf中的數據進行解碼然后將解碼后的對象增加到list中
ByteToMessageDecoder
ByteToMessageDecoder繼承了ChannelInboundHandlerAdapter所以是一個處理Inbound事件的Handler。
其內部保存一個Cumulator用于保存待解碼的ByteBuf,然后不斷調用子類需要實現的抽象方法decode去取出byte數據轉換處理。
/**
* Cumulate {@link ByteBuf}s.
*/
public interface Cumulator {
/**
* Cumulate the given {@link ByteBuf}s and return the {@link ByteBuf} that holds the cumulated bytes.
* The implementation is responsible to correctly handle the life-cycle of the given {@link ByteBuf}s and so
* call {@link ByteBuf#release()} if a {@link ByteBuf} is fully consumed.
*/
ByteBuf cumulate(ByteBufAllocator alloc, ByteBuf cumulation, ByteBuf in);
}
Cumulator有兩種實現,MERGE_CUMULATOR和COMPOSITE_CMUMULATOR。MERGE_CUMULATOR通過memory copy的方法將in中的數據復制寫入到cumulation中。COMPOSITE_CUMULATOR采取的是類似鏈表的方式,沒有進行memory copy, 通過一種CompositeByteBuf來實現,在某些場景下會更適合。默認采用的是MERGE_CUMULATOR。
public static final Cumulator MERGE_CUMULATOR = new Cumulator() {
@Override
public ByteBuf cumulate(ByteBufAllocator alloc, ByteBuf cumulation, ByteBuf in) {
final ByteBuf buffer;
if (cumulation.writerIndex() > cumulation.maxCapacity() - in.readableBytes()
|| cumulation.refCnt() > 1 || cumulation.isReadOnly()) {
// Expand cumulation (by replace it) when either there is not more room in the buffer
// or if the refCnt is greater then 1 which may happen when the user use slice().retain() or
// duplicate().retain() or if its read-only.
// 如果cumulation是只讀的、或者要超過capacity了,或者還有其他地方在引用, 則都通過創建一個新的byteBuf的方式來擴容ByteBuf
buffer = expandCumulation(alloc, cumulation, in.readableBytes());
} else {
buffer = cumulation;
}
buffer.writeBytes(in);
in.release();
return buffer;
}
};
ByteToMessageDecoder中最主要的部分在channelRead處理上
- 收到一個msg后先判斷是否是ByteBuf類型,是的情況創建一個CodecOutputList(也是一種list)保存轉碼后的對象列表
- 如果cumulation為null則把msg設置為cumulation,否則合并到cumulation里
- 調用callDecode方法,嘗試解碼
- finally中如果cumulation已經讀完了,就release并置為null等待gc
- 調用fireChannelRead將解碼后的out傳遞給后面的Handler
public void channelRead(ChannelHandlerContext ctx, Object msg) throws Exception {
if (msg instanceof ByteBuf) {
CodecOutputList out = CodecOutputList.newInstance();
try {
ByteBuf data = (ByteBuf) msg;
first = cumulation == null;
if (first) {
cumulation = data;
} else {
cumulation = cumulator.cumulate(ctx.alloc(), cumulation, data);
}
callDecode(ctx, cumulation, out);
} catch (DecoderException e) {
throw e;
} catch (Exception e) {
throw new DecoderException(e);
} finally {
if (cumulation != null && !cumulation.isReadable()) {
numReads = 0;
cumulation.release();
cumulation = null;
} else if (++ numReads >= discardAfterReads) {
// We did enough reads already try to discard some bytes so we not risk to see a OOME.
// See https://github.com/netty/netty/issues/4275
numReads = 0;
discardSomeReadBytes();
}
int size = out.size();
decodeWasNull = !out.insertSinceRecycled();
fireChannelRead(ctx, out, size);
out.recycle();
}
} else {
ctx.fireChannelRead(msg);
}
}
callDecode中不斷執行抽象decode(ctx, in, out)方法直到in可讀數據沒有減少或當前handler被remove。
protected void callDecode(ChannelHandlerContext ctx, ByteBuf in, List<Object> out) {
try {
while (in.isReadable()) {
int outSize = out.size();
if (outSize > 0) {
fireChannelRead(ctx, out, outSize);
out.clear();
// 檢查當前handler是否被remove了
if (ctx.isRemoved()) {
break;
}
outSize = 0;
}
int oldInputLength = in.readableBytes();
decodeRemovalReentryProtection(ctx, in, out);
// 檢查當前handler是否被remove了
if (ctx.isRemoved()) {
break;
}
if (outSize == out.size()) {
if (oldInputLength == in.readableBytes()) {
break;
} else {
continue;
}
}
if (oldInputLength == in.readableBytes()) { // 這種情況是解碼出了對象但是并沒有移動in的readIndex
throw new DecoderException(
StringUtil.simpleClassName(getClass()) +
".decode() did not read anything but decoded a message.");
}
if (isSingleDecode()) {
break;
}
}
} ...
}
fireChannelRead(ctx, msgs, numElements)的處理方式是對每個解碼后的消息進行fireChannelRead,交給下一個Handler處理
/**
static void fireChannelRead(ChannelHandlerContext ctx, List<Object> msgs, int numElements) {
if (msgs instanceof CodecOutputList) {
fireChannelRead(ctx, (CodecOutputList) msgs, numElements);
} else {
for (int i = 0; i < numElements; i++) {
ctx.fireChannelRead(msgs.get(i));
}
}
}
static void fireChannelRead(ChannelHandlerContext ctx, CodecOutputList msgs, int numElements) {
for (int i = 0; i < numElements; i ++) {
ctx.fireChannelRead(msgs.getUnsafe(i));
}
}
以上就是ByteToMessageDecoder的主要處理部分。關于Netty,面試中會喜歡問道“粘包/拆包”問題,指的是一個消息在網絡中是二進制byte流的形式傳過去的,接收方如何判斷一個消息是否讀完、哪里是分割點等,這些可以通過Netty中提供的一些Decoder來實現,例如DelimiterBasedFrameDecoder,FixedLengthFrameDecoder, LengthFieldBasedFrameDecoder。其中最常見的應該是LengthFieldBasedFrameDecoder了,因為自定義的協議中通常會有一個協議頭,里面有一個字段描述一個消息的大小長度,然后接收方就能知道消息讀到什么時候是讀完一個Frame了。這些解碼器會在后續的文章中介紹。