(Caffe)基本類Blob,Layer,Net(一)

本文從CSDN上轉移過來:
http://blog.csdn.net/mounty_fsc/article/details/51085654

Caffe中,Blob,Layer,Net,Solver是最為核心的類,以下介紹這幾個類,Solver將在下一節(jié)介紹。

1 Blob

1.1 簡介

Blob是:

  1. 對待處理數據帶一層封裝,用于在Caffe中通信傳遞。
  2. 也為CPU和GPU間提供同步能力
  3. 數學上,是一個N維的C風格的存儲數組
    總的來說,Caffe使用Blob來交流數據,其是Caffe中標準的數組與統(tǒng)一的內存接口,它是多功能的,在不同的應用場景具有不同的含義,如可以是:batches of images, model parameters, and derivatives for optimization等。

1.2 源代碼

/** 
 * @brief A wrapper around SyncedMemory holders serving as the basic 
 *        computational unit through which Layer%s, Net%s, and Solver%s 
 *        interact. 
 * 
 * TODO(dox): more thorough description. 
 */  
template <typename Dtype>  
class Blob {  
 public:  
  Blob()  
       : data_(), diff_(), count_(0), capacity_(0) {}  
  
  /// @brief Deprecated; use <code>Blob(const vector<int>& shape)</code>.  
  explicit Blob(const int num, const int channels, const int height,  
      const int width);  
  explicit Blob(const vector<int>& shape);  
  
  .....  
  
 protected:  
  shared_ptr<SyncedMemory> data_;  
  shared_ptr<SyncedMemory> diff_;  
  shared_ptr<SyncedMemory> shape_data_;  
  vector<int> shape_;  
  int count_;  
  int capacity_;  
  
  DISABLE_COPY_AND_ASSIGN(Blob);  
};  // class Blob  

注:此處只保留了構造函數與成員變量。

說明:

  1. Blob在實現上是對SyncedMemory(見1.4部分)進行了一層封裝。
  2. shape_為blob維度,見1.3部分
  3. data_為原始數據
  4. diff_為梯度信息
  5. count為該blob的總容量(即數據的size),函數count(x,y)(或count(x))返回某個切片[x,y]([x,end])內容量,本質上就是shape[x]shape[x+1]....*shape[y]的值

1.3 Blob的shape

由源代碼中可以注意到Blob有個成員變量:vector<ini> shape_
其作用:

  1. 對于圖像數據,shape可以定義為4維的數組(Num, Channels, Height, Width)或(n, k, h, w),所以Blob數據維度為nkh*w,Blob是row-major保存的,因此在(n, k, h, w)位置的值物理位置為((n * K + k) * H + h) * W + w。其中Number是數據的batch size,對于256張圖片為一個training batch的ImageNet來說n = 256;Channel是特征維度,如RGB圖像k = 3
  2. 對于全連接網絡,使用2D blobs (shape (N, D)),然后調用InnerProductLayer
  3. 對于參數,維度根據該層的類型和配置來確定。對于有3個輸入96個輸出的卷積層,Filter核 11 x 11,則blob為96 x 3 x 11 x 11. 對于全連接層,1000個輸出,1024個輸入,則blob為1000 x 1024.

1.4 SyncedMemory

由1.2知,Blob本質是對SyncedMemory的再封裝。其核心代碼如下:

/** 
 * @brief Manages memory allocation and synchronization between the host (CPU) 
 *        and device (GPU). 
 * 
 * TODO(dox): more thorough description. 
 */  
class SyncedMemory {  
 public:  
...  
 const void* cpu_data();  
  const void* gpu_data();  
  void* mutable_cpu_data();  
  void* mutable_gpu_data();  
...  
 private:  
...  
  void* cpu_ptr_;  
  void* gpu_ptr_;  
...  
};  // class SyncedMemory  

Blob同時保存了data_和diff_,其類型為SyncedMemory的指針。
對于data_(diff_相同),其實際值要么存儲在CPU(cpu_ptr_)要么存儲在GPU(gpu_ptr_),有兩種方式訪問CPU數據(GPU相同):

  1. 常量方式,void* cpu_data(),其不改變cpu_ptr_指向存儲區(qū)域的值。

  2. 可變方式,void* mutable_cpu_data(),其可改變cpu_ptr_指向存儲區(qū)值。
    以mutable_cpu_data()為例

    void* SyncedMemory::mutable_cpu_data() {
      to_cpu();
      head_ = HEAD_AT_CPU;
      return cpu_ptr_;
    }
    
    inline void SyncedMemory::to_cpu() {
      switch (head_) {
      case UNINITIALIZED:
        CaffeMallocHost(&cpu_ptr_, size_, &cpu_malloc_use_cuda_);
        caffe_memset(size_, 0, cpu_ptr_);
        head_ = HEAD_AT_CPU;
        own_cpu_data_ = true;
        break;
      case HEAD_AT_GPU:
    #ifndef CPU_ONLY
        if (cpu_ptr_ == NULL) {
          CaffeMallocHost(&cpu_ptr_, size_, &cpu_malloc_use_cuda_);
          own_cpu_data_ = true;
        }
        caffe_gpu_memcpy(size_, gpu_ptr_, cpu_ptr_);
        head_ = SYNCED;
    #else
        NO_GPU;
    #endif
        break;
      case HEAD_AT_CPU:
      case SYNCED:
        break;
      }
    }
    

說明

  1. 經驗上來說,如果不需要改變其值,則使用常量調用的方式,并且,不要在你對象中保存其指針。為何要這樣設計呢,因為這樣涉及能夠隱藏CPU到GPU的同步細節(jié),以及減少數據傳遞從而提高效率,當你調用它們的時候,SyncedMem會決定何時去復制數據,通常情況是僅當gnu或cpu修改后有復制操作,引用1官方文檔中有一個例子說明何時進行復制操作。
  2. 調用mutable_cpu_data()可以讓head轉移到cpu上
  3. 第一次調用mutable_cpu_data()是UNINITIALIZED將執(zhí)行9到14行,將為cpu_ptr_分配host內存
  4. 若head從gpu轉移到cpu,將把數據從gpu復制到cpu中

2 Layer

2.1 簡介

Layer是Caffe的基礎以及基本計算單元。Caffe十分強調網絡的層次性,可以說,一個網絡的大部分功能都是以Layer的形式去展開的,如convolute,pooling,loss等等。
在創(chuàng)建一個Caffe模型的時候,也是以Layer為基礎進行的,需按照src/caffe/proto/caffe.proto中定義的網絡及參數格式定義網絡 prototxt文件(需了解google protocol buffer)

2.2 Layer與Blob的關系

如圖,名為conv1的Layer 的輸入是名為data的bottom blob,其輸出是名為conv1的top blob。

其protobuff定義如下,一個layer有一個到多個的top和bottom,其對應于blob

layer {  
      name: "conv1"  
      type: "Convolution"  
      bottom: "data"  
      top: "conv1"  
     ....  
    }  

2.3 源代碼

 /** 
     * Layer%s must implement a Forward function, in which they take their input 
     * (bottom) Blob%s (if any) and compute their output Blob%s (if any). 
     * They may also implement a Backward function, in which they compute the error 
     * gradients with respect to their input Blob%s, given the error gradients with 
     * their output Blob%s. 
     */  
    template <typename Dtype>  
    class Layer {  
     public:  
      /** 
       * You should not implement your own constructor. Any set up code should go 
       * to SetUp(), where the dimensions of the bottom blobs are provided to the 
       * layer. 
       */  
      explicit Layer(const LayerParameter& param)  
        : layer_param_(param), is_shared_(false) {  
    ...  
        }  
      virtual ~Layer() {}  
      
      /** 
       * @brief Implements common layer setup functionality. 
       * @param bottom the preshaped input blobs 
       * @param top 
       *     the allocated but unshaped output blobs, to be shaped by Reshape 
       */  
      void SetUp(const vector<Blob<Dtype>*>& bottom,  
          const vector<Blob<Dtype>*>& top) {  
    ...  
      }  
      
      ...  
      
      /** 
       * @brief Given the bottom blobs, compute the top blobs and the loss. 
       * \return The total loss from the layer. 
       * 
       * The Forward wrapper calls the relevant device wrapper function 
       * (Forward_cpu or Forward_gpu) to compute the top blob values given the 
       * bottom blobs.  If the layer has any non-zero loss_weights, the wrapper 
       * then computes and returns the loss.
       * 
       * Your layer should implement Forward_cpu and (optionally) Forward_gpu. 
       */  
      inline Dtype Forward(const vector<Blob<Dtype>*>& bottom,  
          const vector<Blob<Dtype>*>& top);  
      
      /** 
       * @brief Given the top blob error gradients, compute the bottom blob error 
       *        gradients. 
       * 
       * @param top 
       *     the output blobs, whose diff fields store the gradient of the error 
       *     with respect to themselves 
       * @param propagate_down 
       *     a vector with equal length to bottom, with each index indicating 
       *     whether to propagate the error gradients down to the bottom blob at 
       *     the corresponding index 
       * @param bottom 
       *     the input blobs, whose diff fields will store the gradient of the error 
       *     with respect to themselves after Backward is run 
       * 
       * The Backward wrapper calls the relevant device wrapper function 
       * (Backward_cpu or Backward_gpu) to compute the bottom blob diffs given the 
       * top blob diffs. 
       * 
       * Your layer should implement Backward_cpu and (optionally) Backward_gpu. 
       */  
      inline void Backward(const vector<Blob<Dtype>*>& top,  
          const vector<bool>& propagate_down,  
          const vector<Blob<Dtype>*>& bottom);  
      
     ...  
      
     protected:  
      /** The protobuf that stores the layer parameters */  
      LayerParameter layer_param_;  
      /** The phase: TRAIN or TEST */  
      Phase phase_;  
      /** The vector that stores the learnable parameters as a set of blobs. */  
      vector<shared_ptr<Blob<Dtype> > > blobs_;  
      /** Vector indicating whether to compute the diff of each param blob. */  
      vector<bool> param_propagate_down_;  
      
      /** The vector that indicates whether each top blob has a non-zero weight in 
       *  the objective function. */  
      vector<Dtype> loss_;  
      
      virtual void Forward_cpu(const vector<Blob<Dtype>*>& bottom,  
          const vector<Blob<Dtype>*>& top) = 0;  
      
      virtual void Forward_gpu(const vector<Blob<Dtype>*>& bottom,  
          const vector<Blob<Dtype>*>& top) {  
        // LOG(WARNING) << "Using CPU code as backup.";  
        return Forward_cpu(bottom, top);  
      }  
      
      virtual void Backward_cpu(const vector<Blob<Dtype>*>& top,  
          const vector<bool>& propagate_down,  
          const vector<Blob<Dtype>*>& bottom) = 0;  
      
      virtual void Backward_gpu(const vector<Blob<Dtype>*>& top,  
          const vector<bool>& propagate_down,  
          const vector<Blob<Dtype>*>& bottom) {  
        // LOG(WARNING) << "Using CPU code as backup.";  
        Backward_cpu(top, propagate_down, bottom);  
      }  
      
    ...  
      
     };  // class Layer  

說明:每一層定義了三種操作

  1. Setup:Layer的初始化
  2. Forward:前向傳導計算,根據bottom計算top,調用了Forward_cpu(必須實現)和Forward_gpu(可選,若未實現,則調用cpu的)
  3. Backward:反向傳導計算,根據top計算bottom的梯度,其他同上

2.4 派生類分類

在Layer的派生類中,主要可以分為Vision Layers

  • Vision Layers
    Vison 層主要用于處理視覺圖像相關的層,以圖像作為輸入,產生其他的圖像。其主要特點是具有空間結構。
    包含Convolution(conv_layer.hpp)、Pooling(pooling_layer.hpp)、Local Response Normalization(LRN)(lrn_layer.hpp)、im2col等,注:老版本的Caffe有頭文件include/caffe/vision_layers.hpp,新版本中用include/caffe/layer/conv_layer.hpp等取代
  • Loss Layers
    這些層產生loss,如Softmax(SoftmaxWithLoss)、Sum-of-Squares / Euclidean(EuclideanLoss)、Hinge / Margin(HingeLoss)、Sigmoid Cross-Entropy(SigmoidCrossEntropyLoss)、Infogain(InfogainLoss)、Accuracy and Top-k等
  • Activation / Neuron Layers
    元素級別的運算,運算均為同址計算(in-place computation,返回值覆蓋原值而占用新的內存)。如:ReLU / Rectified-Linear and Leaky-ReLU(ReLU)、Sigmoid(Sigmoid)、TanH / Hyperbolic Tangent(TanH)、Absolute Value(AbsVal)、Power(Power)、BNLL(BNLL)等
  • Data Layers
    網絡的最底層,主要實現數據格式的轉換,如:Database(Data)、In-Memory(MemoryData)、HDF5 Input(HDF5Data)、HDF5 Output(HDF5Output)、Images(ImageData)、Windows(WindowData)、Dummy(DummyData)等
  • Common Layers
    Caffe提供了單個層與多個層的連接。如:Inner Product(InnerProduct)、Splitting(Split)、Flattening(Flatten)、Reshape(Reshape)、Concatenation(Concat)、Slicing(Slice)、Elementwise(Eltwise)、Argmax(ArgMax)、Softmax(Softmax)、Mean-Variance Normalization(MVN)等

注,括號內為Layer Type,沒有括號暫缺信息,詳細咱見引用2

3 Net

3.1 簡介

一個Net由多個Layer組成。一個典型的網絡從data layer(從磁盤中載入數據)出發(fā)到loss layer結束。如圖是一個簡單的邏輯回歸分類器。

<img width="100" height="50" src="http://upload-images.jianshu.io/upload_images/1867031-00b800dbcc1abe37?imageMogr2/auto-orient/strip%7CimageView2/2/w/1240">
如下定義:

name: "LogReg"
layer {
  name: "mnist"
  type: "Data"
  top: "data"
  top: "label"
  data_param {
    source: "input_leveldb"
    batch_size: 64
  }
}
layer {
  name: "ip"
  type: "InnerProduct"
  bottom: "data"
  top: "ip"
  inner_product_param {
    num_output: 2
  }
}
layer {
  name: "loss"
  type: "SoftmaxWithLoss"
  bottom: "ip"
  bottom: "label"
  top: "loss"
}

3.2 源代碼

/**
 * @brief Connects Layer%s together into a directed acyclic graph (DAG)
 *        specified by a NetParameter.
 *
 * TODO(dox): more thorough description.
 */
template <typename Dtype>
class Net {
 public:
...
  /// @brief Initialize a network with a NetParameter.
  void Init(const NetParameter& param);
...

  const vector<Blob<Dtype>*>& Forward(const vector<Blob<Dtype>* > & bottom,
      Dtype* loss = NULL);
...
  /**
   * The network backward should take no input and output, since it solely
   * computes the gradient w.r.t the parameters, and the data has already been
   * provided during the forward pass.
   */
  void Backward();
  ...
  Dtype ForwardBackward(const vector<Blob<Dtype>* > & bottom) {
    Dtype loss;
    Forward(bottom, &loss);
    Backward();
    return loss;
  }
...

 protected:
  ...
  /// @brief The network name
  string name_;
  /// @brief The phase: TRAIN or TEST
  Phase phase_;
  /// @brief Individual layers in the net
  vector<shared_ptr<Layer<Dtype> > > layers_;
  /// @brief the blobs storing intermediate results between the layer.
  vector<shared_ptr<Blob<Dtype> > > blobs_;
  vector<vector<Blob<Dtype>*> > bottom_vecs_;
  vector<vector<Blob<Dtype>*> > top_vecs_;
  ...
  /// The root net that actually holds the shared layers in data parallelism
  const Net* const root_net_;
};
}  // namespace caffe

說明:

  1. Init中,通過創(chuàng)建blob和layer搭建了整個網絡框架,以及調用各層的SetUp函數。
  2. blobs_存放這每一層產生的blobls的中間結果,bottom_vecs_存放每一層的bottom blobs,top_vecs_存放每一層的top blobs

參考文獻:
[1].http://caffe.berkeleyvision.org/tutorial/net_layer_blob.html
[2].http://caffe.berkeleyvision.org/tutorial/layers.html
[3].https://yufeigan.github.io
[4].https://www.zhihu.com/question/27982282

最后編輯于
?著作權歸作者所有,轉載或內容合作請聯(lián)系作者
平臺聲明:文章內容(如有圖片或視頻亦包括在內)由作者上傳并發(fā)布,文章內容僅代表作者本人觀點,簡書系信息發(fā)布平臺,僅提供信息存儲服務。

推薦閱讀更多精彩內容