2021-06-28 Rstdio中DESeq2相關(guān)軟件的安裝

#首先升級R

install.packages("installr")

library(installr)

updateR()

library("BiocManager")

#Bioconductor version 3.12 (BiocManager 1.30.15), R 4.0.5 (2021-03-31) Bioconductor version '3.12' is out-of-date; the current release version '3.13' is available with R version '4.1'; see https://bioconductor.org/install

#重新更新Bioconductor

if (!requireNamespace("BiocManager", quietly = TRUE))

? install.packages("BiocManager")

BiocManager::install(version = "3.13")

#更新成功

library("BiocManager")

#通過BiocManager安裝我們常用的R包

BiocManager::install("ggplot2")

BiocManager::install(c("ggplot2","ggtree","DESeq2"))

#一次安裝多個包

BiocManager::install("DESeq2")

#錯誤: 無法載入程輯包‘GenomeInfoDb’

BiocManager::install("GenomeInfoDbData")

#測試軟件DESeq2

library("DESeq2")

#開始,DESeq2包分析差異表達(dá)基因簡單來說只有三步:構(gòu)建dds矩陣,標(biāo)準(zhǔn)化,以及進行差異分析。

library(DESeq2)? #加載包

library(apeglm)

#Error in library(apeglm) : 不存在叫‘a(chǎn)peglm’這個名字的程輯包

BiocManager::install("apeglm")

####測試

library(DESeq2)? #加載包

library(apeglm)

安裝成功。

以下為差異基因表達(dá)分析的相關(guān)腳本:

pvalue(pval): 統(tǒng)計學(xué)差異顯著性檢驗指標(biāo)。

qvalue(p-adjusted): 校正后的p值(qvalue=padj=FDR=Corrected p-Value=p-adjusted),是對p值進行了多重假設(shè)檢驗,能更好地控制假陽性率。

校正后的p值不同的幾種表現(xiàn)形式,都是基于BH的方法進行多重假設(shè)檢驗得到的。校正后的p值不同的展現(xiàn)形式是因為不同的分析軟件產(chǎn)生的。

作者:村長吃火鍋

鏈接:http://www.lxweimin.com/p/b1f6b50fde0e

來源:簡書 著作權(quán)歸作者所有。商業(yè)轉(zhuǎn)載請聯(lián)系作者獲得授權(quán),非商業(yè)轉(zhuǎn)載請注明出處。

E:/SolPanTP/RawData/諾禾轉(zhuǎn)錄組測序(310)/05 數(shù)據(jù)分析/DESeq2/log2FC+p value/pi/pi_24 vs 0/

E:/SolPanTP/RawData/諾禾轉(zhuǎn)錄組測序(310)/05 數(shù)據(jù)分析/DESeq2/log2FC+p value/pi/pi_48 vs 0/

E:/SolPanTP/RawData/諾禾轉(zhuǎn)錄組測序(310)/05 數(shù)據(jù)分析/DESeq2/log2FC+p value/pi/pi_48 vs 24/

致病疫霉

###############################################################################################

library(DESeq2)? #加載包

library(apeglm)

data.pi_Sae24 = read.table("E:/SolPanTP/RawData/諾禾轉(zhuǎn)錄組測序(310)/05 數(shù)據(jù)分析/DESeq2/log2FC+p value/pi/pi_24 vs 0/pi_Sae24_count.csv",sep = ',',header = T,row.names = 1)

data.pi_Sly24 = read.table("E:/SolPanTP/RawData/諾禾轉(zhuǎn)錄組測序(310)/05 數(shù)據(jù)分析/DESeq2/log2FC+p value/pi/pi_24 vs 0/pi_Sly24_count.csv",sep = ',',header = T,row.names = 1)

data.pi_Sme24 = read.table("E:/SolPanTP/RawData/諾禾轉(zhuǎn)錄組測序(310)/05 數(shù)據(jù)分析/DESeq2/log2FC+p value/pi/pi_24 vs 0/pi_Sme24_count.csv",sep = ',',header = T,row.names = 1)

data.pi_Stu24 = read.table("E:/SolPanTP/RawData/諾禾轉(zhuǎn)錄組測序(310)/05 數(shù)據(jù)分析/DESeq2/log2FC+p value/pi/pi_24 vs 0/pi_Stu24_count2.csv",sep = ',',header = T,row.names = 1)

condition.pi_Sae24 <- factor(c(rep('0',3),rep('24',5)),levels = c("0","24"))

condition.pi_Sly24 <- factor(c(rep('0',3),rep('24',5)),levels = c("0","24"))

condition.pi_Sme24 <- factor(c(rep('0',3),rep('24',5)),levels = c("0","24"))

condition.pi_Stu24 <- factor(c(rep('0',3),rep('24',5)),levels = c("0","24"))

colData.pi_Sae24 = data.frame(row.names= colnames(data.pi_Sae24),condition.pi_Sae24)

colData.pi_Sly24 = data.frame(row.names= colnames(data.pi_Sly24),condition.pi_Sly24)

colData.pi_Sme24 = data.frame(row.names= colnames(data.pi_Sme24),condition.pi_Sme24)

colData.pi_Stu24 = data.frame(row.names= colnames(data.pi_Stu24),condition.pi_Stu24)

dds.pi_Sae24 <- DESeqDataSetFromMatrix(data.pi_Sae24,colData.pi_Sae24,design = ~ condition.pi_Sae24)

dds.pi_Sly24 <- DESeqDataSetFromMatrix(data.pi_Sly24,colData.pi_Sly24,design = ~ condition.pi_Sly24)

dds.pi_Sme24 <- DESeqDataSetFromMatrix(data.pi_Sme24,colData.pi_Sme24,design = ~ condition.pi_Sme24)

dds.pi_Stu24 <- DESeqDataSetFromMatrix(data.pi_Stu24,colData.pi_Stu24,design = ~ condition.pi_Stu24)

dds.pi_Sae24 <-DESeq(dds.pi_Sae24)

resultsNames(dds.pi_Sae24)

dds.pi_Sly24 <-DESeq(dds.pi_Sly24)

resultsNames(dds.pi_Sly24)

dds.pi_Sme24 <-DESeq(dds.pi_Sme24)

resultsNames(dds.pi_Sme24)

dds.pi_Stu24 <-DESeq(dds.pi_Stu24)

resultsNames(dds.pi_Stu24)

res.pi_Sae24.24.0 = results(dds.pi_Sae24,contrast=c("condition.pi_Sae24","24","0"))

res.pi_Sly24.24.0 = results(dds.pi_Sly24,contrast=c("condition.pi_Sly24","24","0"))

res.pi_Sme24.24.0 = results(dds.pi_Sme24,contrast=c("condition.pi_Sme24","24","0"))

res.pi_Stu24.24.0 = results(dds.pi_Stu24,contrast=c("condition.pi_Stu24","24","0"))

order.res.pi_Sae24.24.0 <- res.pi_Sae24.24.0[order(res.pi_Sae24.24.0$pvalue),]

order.res.pi_Sly24.24.0 <- res.pi_Sly24.24.0[order(res.pi_Sly24.24.0$pvalue),]

order.res.pi_Sme24.24.0 <- res.pi_Sme24.24.0[order(res.pi_Sme24.24.0$pvalue),]

order.res.pi_Stu24.24.0 <- res.pi_Stu24.24.0[order(res.pi_Stu24.24.0$pvalue),]

setwd("E:/SolPanTP/RawData/諾禾轉(zhuǎn)錄組測序(310)/05 數(shù)據(jù)分析/DESeq2/log2FC+p value/pi/pi_24 vs 0")

write.csv(order.res.pi_Sae24.24.0,file = "order.res.pi_Sae24.24.0.csv",quote = F)

write.csv(order.res.pi_Sly24.24.0,file = "order.res.pi_Sly24.24.0.csv",quote = F)

write.csv(order.res.pi_Sme24.24.0,file = "order.res.pi_Sme24.24.0.csv",quote = F)

write.csv(order.res.pi_Stu24.24.0,file = "order.res.pi_Stu24.24.0.csv",quote = F)

diffgene_pi_Sae24.24.0_deseq2 <- subset(order.res.pi_Sae24.24.0,padj < 0.01 & abs(log2FoldChange) >2)

diffgene_pi_Sly24.24.0_deseq2 <- subset(order.res.pi_Sly24.24.0,padj < 0.01 & abs(log2FoldChange) >2)

diffgene_pi_Sme24.24.0_deseq2 <- subset(order.res.pi_Sme24.24.0,padj < 0.01 & abs(log2FoldChange) >2)

diffgene_pi_Stu24.24.0_deseq2 <- subset(order.res.pi_Stu24.24.0,padj < 0.01 & abs(log2FoldChange) >2)

write.csv(diffgene_pi_Sae24.24.0_deseq2,file = "diffgene_pi_Sae24.24.0_deseq2.csv",quote = F)

write.csv(diffgene_pi_Sly24.24.0_deseq2,file = "diffgene_pi_Sly24.24.0_deseq2.csv",quote = F)

write.csv(diffgene_pi_Sme24.24.0_deseq2,file = "diffgene_pi_Sme24.24.0_deseq2.csv",quote = F)

write.csv(diffgene_pi_Stu24.24.0_deseq2,file = "diffgene_pi_Stu24.24.0_deseq2.csv",quote = F)

?著作權(quán)歸作者所有,轉(zhuǎn)載或內(nèi)容合作請聯(lián)系作者
平臺聲明:文章內(nèi)容(如有圖片或視頻亦包括在內(nèi))由作者上傳并發(fā)布,文章內(nèi)容僅代表作者本人觀點,簡書系信息發(fā)布平臺,僅提供信息存儲服務(wù)。

推薦閱讀更多精彩內(nèi)容