python | 基礎分析

1-數據準備

1.1-函數

1.png

2.png

1.2-向量化運算

3.png

4.png

2-數據處理

5.png

2-1 導入

2-1-1 CSV

6.png

eg:
from pandas import read_csv;
df = read_csv('C://Users//user//Desktop//4.1//1.csv')
df

2-1-2 文本文件

7.png

eg:
from pandas import read_table;
df = read_table('C://Users//user//Desktop//4.1//2.txt', names=['age', 'name'], sep=',')
df

2-1-3 excel

8.png

eg:
from pandas import read_excel;
df = read_excel('C://Users//user//Desktop//4.1//3.xlsx', sheetname='data')

2-2 導出

9.png

from pandas import DataFrame;
df = DataFrame({
'age': [21, 22, 23],
'name': ['KEN', 'John', 'JIMI']
});
df.to_csv("C:\\Users\\user\\Desktop\\df.csv");
df.to_csv("C:\\Users\\user\\Desktop\\df.csv", index=False);

2-3 重復值處理

10.png

2-4 缺失值處理

11.png

12.png

2-5 空格值處理

13.png

eg:
from pandas import read_csv;
df = read_csv('C://Users//user//Desktop//data.csv')
newName = df['name'].str.strip();
df['name'] = newName;

2-6 日期處理

14.png

eg:
from pandas import read_csv;
from pandas import to_datetime;
df = read_csv('D:\\Python\\3.5\\1.csv', encoding='utf8')
df_dt = to_datetime(df.注冊時間, format='%Y/%m/%d');


15.png

eg:
from pandas import read_csv;
from pandas import to_datetime;
from datetime import datetime;
df = read_csv('D:\\Python\\3.5\\1.csv', encoding='utf8')
df_dt = to_datetime(df.注冊時間, format='%Y/%m/%d');
df_dt_str = df_dt.apply(lambda x: datetime.strftime(x, '%d/%m/%Y'));


16.png

eg:
from pandas import read_csv;
from pandas import to_datetime;
df = read_csv('D:\\Python\\3.5\\1.csv', encoding='utf8')
df_dt = to_datetime(df.注冊時間, format='%Y/%m/%d');
df_dt.dt.year;
df_dt.dt.second;

df_dt.dt.minute;
df_dt.dt.hour;
df_dt.dt.day;
df_dt.dt.month;

2-7 字段處理

2-7-1 字段抽取

17.png

eg:
from pandas import read_csv;
df = read_csv("D://PA//4.6//data.csv");
df['tel'] = df['tel'].astype(str);
運營商
bands = df['tel'].str.slice(0, 3);
地區
areas = df['tel'].str.slice(3, 7);
號碼段
nums = df['tel'].str.slice(7, 11);

2-7-2 字段拆分

18.png

2-7-3 記錄抽取(條件篩選)

19.png

20.png

21.png

2-7-4 隨機抽樣

22.png

2-8 記錄合并

23.png

24.png

eg:
import pandas;
from pandas import read_csv;
df1 = read_csv("D://PA//4.10//data1.csv", sep="|");
df2 = read_csv("D://PA//4.10//data2.csv", sep="|");
df3 = read_csv("D://PA//4.10//data3.csv", sep="|");
df = pandas.concat([df1, df2, df3])

2-9 字段合并

25.png

26.png

eg:
from pandas import read_csv;
df = read_csv(
"D://PA//4.11//data.csv",
sep=" ",
names=['band', 'area', 'num']
);
df = df.astype(str);
tel = df['band'] + df['area'] + df['num']

2-10 字段匹配(vlookup)

27.png

28.png

eg:
import pandas;
from pandas import read_csv;
items = read_csv(
"D://PA//4.12//data1.csv",
sep='|',
names=['id', 'comments', 'title']
);
prices = read_csv(
"D://PA//4.12//data2.csv",
sep='|',
names=['id', 'oldPrice', 'nowPrice']
);
itemPrices = pandas.merge(
items,
prices,
left_on='id',
right_on='id'
);

2-11 簡單計算

29.png

eg:
from pandas import read_csv;
df = read_csv("D:\\Python\\3.4\\1.csv", sep="|");
result = df.price*df.num
df['sum'] = result

2-12 數據分組

30.png

31.png

eg:
import pandas;
from pandas import read_csv;
df = read_csv("D:\\PA\\4.15\\data.csv", sep='|');
bins = [min(df.cost)-1, 20, 40, 60, 80, 100, max(df.cost)+1];
labels = ['20以下', '20到40', '40到60', '60到80', '80到100', '100以上'];
pandas.cut(df.cost, bins)
pandas.cut(df.cost, bins, right=False)
pandas.cut(df.cost, bins, right=False, labels=labels)

2-13 日期抽取

32.png

eg:
from pandas import read_csv;
from pandas import to_datetime;
df = read_csv('D:\\PA\\4.18\\data.csv', encoding='utf8')
df_dt = to_datetime(df.注冊時間, format='%Y/%m/%d');
df_dt.dt.year
df_dt.dt.second;
df_dt.dt.minute;
df_dt.dt.hour;

3-數據分析

3-1 基礎分析

41.png

42.png

3-2 分組分析

43.png

44.png

3-3 分布分析

eg:
import numpy;
import pandas;
from pandas import read_csv;
df = read_csv('D:\\Python\\4.3\\用戶明細.csv');
bins = [min(df.年齡)-1, 20, 30, 40, max(df.年齡)+1];
labels = ['20歲以及以下', '21歲到30歲', '31歲到40歲', '41歲以上'];
年齡分層 = pandas.cut(df.年齡, bins, labels=labels)
df['年齡分層'] = 年齡分層;
df.groupby(by=['年齡分層'])['年齡'].agg({'人數':numpy.size});

3-4 交叉分析

45.png

3-5 結構分析

46.png

3-6 相關分析

47.png

48.png

eg:
import numpy;
import pandas;
from pandas import read_csv;
data = read_csv('D:\\Python\\4.6\\data.csv');
--先來看看如何進行兩個列之間的相關度的計算
data['人口'].corr(data['文盲率'])
--多列之間的相關度的計算方法
--選擇多列的方法
--data.loc[:, ['列1', '列2', '……', '列n']]
data.loc[:, ['超市購物率', '網上購物率', '文盲率', '人口']].corr()

最后編輯于
?著作權歸作者所有,轉載或內容合作請聯系作者
平臺聲明:文章內容(如有圖片或視頻亦包括在內)由作者上傳并發布,文章內容僅代表作者本人觀點,簡書系信息發布平臺,僅提供信息存儲服務。

推薦閱讀更多精彩內容