R語言學習記錄 - 多變量分析

這幾天在優達Udacity學了用R做數據分析,以前也學過,不過沒有學得這么系統,把今天學的過程和作業貼在這里。有興趣的同學可以點擊鏈接去聽課

連續三天每天3個多小時,終于把核心內容學完了!現在對編R語言也有點信心了。其實工具都只是用來輔助自己的,最終數據分析的功夫還是在于基礎原理。就像一個人無論用Markdown、word、有道云、還是記事本寫文章,最終決定文章水平的還是寫作水平。所以學會這些軟件以后不能自我感動,還是多花時間提升底層的理論水平比較重要。工具畢竟是工具,最終決定能不能找到工作的還是對于業務的理解。

Lesson 5

Multivariate Data

Notes:


Moira Perceived Audience Size Colored by Age

Notes:


Third Qualitative Variable

Notes:

pf <- read.delim('pseudo_facebook.tsv')
library(ggplot2)
ggplot(aes(x = gender, y = age),
       data = subset(pf, !is.na(gender))) + 
  geom_boxplot()+
  stat_summary(fun.y=mean,geom="point",shape=4,color="blue")
image.png
ggplot(aes(x = age, y = friend_count),
       data = subset(pf, !is.na(gender))) + 
  geom_line(aes(color=gender),stat='summary',fun.y=median)
image.png

Plotting Conditional Summaries

Notes:

library(dplyr)
## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
#chain fuctions together %>%
pf.fc_by_age_gender <- pf%>%
  filter(!is.na(gender))%>%
  group_by(age,gender)%>%
  summarise(fri_mean=mean(friend_count),
            fri_median=median(friend_count))%>%
  arrange(age)

ggplot(aes(x=age,y=fri_median,color=gender),
       data=subset(pf.fc_by_age_gender,!is.na(gender)))+
  geom_line()
image.png

Thinking in Ratios

Notes:


Wide and Long Format

Notes:


Reshaping Data

Notes:

library(reshape2)
pf.fc_by_age_gender.wide <- dcast(pf.fc_by_age_gender,
                                 age ~ gender,
                                 value.var='fri_median')
head(pf.fc_by_age_gender.wide)
##   age female  male
## 1  13  148.0  55.0
## 2  14  224.0  92.5
## 3  15  276.0 106.5
## 4  16  258.5 136.0
## 5  17  245.5 125.0
## 6  18  243.0 122.0

Ratio Plot

Notes:

ggplot(aes(x=age,y=female/male),
       data=pf.fc_by_age_gender.wide)+
  geom_line()+
  geom_hline(yintercept=1,alpha=.3,linetype=2)
image.png

Third Quantitative Variable

Notes:

pf$year_joined <- floor(2014 -pf$tenure/365)
summary(pf$year_joined)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max.    NA's 
##    2005    2012    2012    2012    2013    2014       2
table(pf$year_joined)
## 
##  2005  2006  2007  2008  2009  2010  2011  2012  2013  2014 
##     9    15   581  1507  4557  5448  9860 33366 43588    70

Cut a Variable

Notes:

pf$year_joined.bucket <- cut(pf$year_joined,
                             c(2004,2009,2011,2012,2014))

Plotting it All Together

Notes:

ggplot(aes(x = age, y = friend_count),
       data = subset(pf, !is.na(gender)&!is.na(year_joined.bucket))) + 
  geom_line(aes(color=year_joined.bucket),stat='summary',fun.y=median)
image.png

Plot the Grand Mean

Notes:

ggplot(aes(x = age, y = friend_count),
       data = subset(pf, !is.na(gender)&!is.na(year_joined.bucket))) + 
  geom_line(aes(color=year_joined.bucket),stat='summary',fun.y=mean)+
  geom_line(linetype=2,stat='summary',fun.y=mean)
image.png

Friending Rate

Notes:

with(subset(pf,tenure>=1),summary(friend_count/tenure))
##     Min.  1st Qu.   Median     Mean  3rd Qu.     Max. 
##   0.0000   0.0775   0.2205   0.6096   0.5658 417.0000

Friendships Initiated

Notes:

What is the median friend rate?

What is the maximum friend rate?

ggplot(aes(y=friendships_initiated/tenure,
           x=tenure),
       data=subset(pf,tenure>=1))+
  geom_line(aes(color=year_joined.bucket))
image.png

Bias-Variance Tradeoff Revisited

Notes:

q1 <- ggplot(aes(x = tenure, y = friendships_initiated / tenure),
       data = subset(pf, tenure >= 1)) +
  geom_line(aes(color = year_joined.bucket),
            stat = 'summary',
            fun.y = mean)+
  geom_smooth()

q2<- ggplot(aes(x = 7 * round(tenure / 7), y = friendships_initiated / tenure),
       data = subset(pf, tenure > 0)) +
  geom_line(aes(color = year_joined.bucket),
            stat = "summary",
            fun.y = mean)

q3<- ggplot(aes(x = 30 * round(tenure / 30), y = friendships_initiated / tenure),
       data = subset(pf, tenure > 0)) +
  geom_line(aes(color = year_joined.bucket),
            stat = "summary",
            fun.y = mean)

q4<- ggplot(aes(x = 90 * round(tenure / 90), y = friendships_initiated / tenure),
       data = subset(pf, tenure > 0)) +
  geom_line(aes(color = year_joined.bucket),
            stat = "summary",
            fun.y = mean)

library(gridExtra)
## 
## Attaching package: 'gridExtra'
## The following object is masked from 'package:dplyr':
## 
##     combine
grid.arrange(q1,q2,q3,q4,ncol=1)
## `geom_smooth()` using method = 'gam'
image.png

Sean’s NFL Fan Sentiment Study

Notes:


Introducing the Yogurt Data Set

Notes:


Histograms Revisited

Notes:

yo<-read.csv('yogurt.csv')
str(yo)
## 'data.frame':    2380 obs. of  9 variables:
##  $ obs        : int  1 2 3 4 5 6 7 8 9 10 ...
##  $ id         : int  2100081 2100081 2100081 2100081 2100081 2100081 2100081 2100081 2100081 2100081 ...
##  $ time       : int  9678 9697 9825 9999 10015 10029 10036 10042 10083 10091 ...
##  $ strawberry : int  0 0 0 0 1 1 0 0 0 0 ...
##  $ blueberry  : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ pina.colada: int  0 0 0 0 1 2 0 0 0 0 ...
##  $ plain      : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ mixed.berry: int  1 1 1 1 1 1 1 1 1 1 ...
##  $ price      : num  59 59 65 65 49 ...
yo$id<-factor(yo$id)
qplot(x=price,data=yo,fill=I('#F79420'))
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
image.png

Number of Purchases

Notes:

summary(yo)
##       obs               id            time         strawberry     
##  Min.   :   1.0   2132290:  74   Min.   : 9662   Min.   : 0.0000  
##  1st Qu.: 696.5   2130583:  59   1st Qu.: 9843   1st Qu.: 0.0000  
##  Median :1369.5   2124073:  50   Median :10045   Median : 0.0000  
##  Mean   :1367.8   2149500:  50   Mean   :10050   Mean   : 0.6492  
##  3rd Qu.:2044.2   2101790:  47   3rd Qu.:10255   3rd Qu.: 1.0000  
##  Max.   :2743.0   2129528:  39   Max.   :10459   Max.   :11.0000  
##                   (Other):2061                                    
##    blueberry        pina.colada          plain         mixed.berry    
##  Min.   : 0.0000   Min.   : 0.0000   Min.   :0.0000   Min.   :0.0000  
##  1st Qu.: 0.0000   1st Qu.: 0.0000   1st Qu.:0.0000   1st Qu.:0.0000  
##  Median : 0.0000   Median : 0.0000   Median :0.0000   Median :0.0000  
##  Mean   : 0.3571   Mean   : 0.3584   Mean   :0.2176   Mean   :0.3887  
##  3rd Qu.: 0.0000   3rd Qu.: 0.0000   3rd Qu.:0.0000   3rd Qu.:0.0000  
##  Max.   :12.0000   Max.   :10.0000   Max.   :6.0000   Max.   :8.0000  
##                                                                       
##      price      
##  Min.   :20.00  
##  1st Qu.:50.00  
##  Median :65.04  
##  Mean   :59.25  
##  3rd Qu.:68.96  
##  Max.   :68.96  
## 
length(unique(yo$price))
## [1] 20
table(yo$price)
## 
##    20 24.96 33.04  33.2 33.28 33.36 33.52 39.04    44 45.04 48.96 49.52 
##     2    11    54     1     1    22     1   234    21    11    81     1 
##  49.6    50 55.04 58.96    62 63.04 65.04 68.96 
##     1   205     6   303    15     2   799   609
yo <- transform(yo,all.purchases = strawberry+blueberry+pina.colada+plain+mixed.berry)
summary(yo)
##       obs               id            time         strawberry     
##  Min.   :   1.0   2132290:  74   Min.   : 9662   Min.   : 0.0000  
##  1st Qu.: 696.5   2130583:  59   1st Qu.: 9843   1st Qu.: 0.0000  
##  Median :1369.5   2124073:  50   Median :10045   Median : 0.0000  
##  Mean   :1367.8   2149500:  50   Mean   :10050   Mean   : 0.6492  
##  3rd Qu.:2044.2   2101790:  47   3rd Qu.:10255   3rd Qu.: 1.0000  
##  Max.   :2743.0   2129528:  39   Max.   :10459   Max.   :11.0000  
##                   (Other):2061                                    
##    blueberry        pina.colada          plain         mixed.berry    
##  Min.   : 0.0000   Min.   : 0.0000   Min.   :0.0000   Min.   :0.0000  
##  1st Qu.: 0.0000   1st Qu.: 0.0000   1st Qu.:0.0000   1st Qu.:0.0000  
##  Median : 0.0000   Median : 0.0000   Median :0.0000   Median :0.0000  
##  Mean   : 0.3571   Mean   : 0.3584   Mean   :0.2176   Mean   :0.3887  
##  3rd Qu.: 0.0000   3rd Qu.: 0.0000   3rd Qu.:0.0000   3rd Qu.:0.0000  
##  Max.   :12.0000   Max.   :10.0000   Max.   :6.0000   Max.   :8.0000  
##                                                                       
##      price       all.purchases   
##  Min.   :20.00   Min.   : 1.000  
##  1st Qu.:50.00   1st Qu.: 1.000  
##  Median :65.04   Median : 2.000  
##  Mean   :59.25   Mean   : 1.971  
##  3rd Qu.:68.96   3rd Qu.: 2.000  
##  Max.   :68.96   Max.   :21.000  
## 

Prices over Time

Notes:

ggplot(aes(x=time,y=price),data=yo)+
  geom_jitter(alpha=1/5)
image.png

Sampling Observations

Notes:


Looking at Samples of Households

set.seed(4230)
sample.ids <- sample(levels(yo$id),16)

ggplot(aes(x=time,y=price),data=subset(yo,id %in% sample.ids))+
  facet_wrap(~ id) + 
  geom_line()+
  geom_point(aes(size=all.purchases),pch=1)
image.png

The Limits of Cross Sectional Data

Notes:


Many Variables

Notes:


Scatterplot Matrix

Notes:


Even More Variables

Notes:


Heat Maps

Notes:

nci <- read.table("nci.tsv")
colnames(nci) <- c(1:64)
nci.long.samp <- melt(as.matrix(nci[1:200,]))
names(nci.long.samp) <- c("gene", "case", "value")
head(nci.long.samp)
##   gene case  value
## 1    1    1  0.300
## 2    2    1  1.180
## 3    3    1  0.550
## 4    4    1  1.140
## 5    5    1 -0.265
## 6    6    1 -0.070
ggplot(aes(y = gene, x = case, fill = value),
  data = nci.long.samp) +
  geom_tile() +
  scale_fill_gradientn(colours = colorRampPalette(c("blue", "red"))(100))
image.png

Analyzing Three of More Variables

Reflection:


Click

KnitHTML

to see all of your hard work and to have an html page of this lesson, your answers, and your notes!

最后編輯于
?著作權歸作者所有,轉載或內容合作請聯系作者
平臺聲明:文章內容(如有圖片或視頻亦包括在內)由作者上傳并發布,文章內容僅代表作者本人觀點,簡書系信息發布平臺,僅提供信息存儲服務。

推薦閱讀更多精彩內容