Java線程池原理淺析

一、線程池工廠Executors

我們平時在使用線程池的時候一般都是通過Executors的newXxxxxPool()靜態(tài)方法來獲得不同功能的線程池對象。我們來看一下這些方法都是怎么創(chuàng)建線程池的:

     /**
      * 固定線程數(shù)的線程池
      */
    public static ExecutorService newFixedThreadPool(int nThreads, ThreadFactory threadFactory) {
        return new ThreadPoolExecutor(nThreads, nThreads,
                                      0L, TimeUnit.MILLISECONDS,
                                      new LinkedBlockingQueue<Runnable>(),
                                      threadFactory);
    }
     /**
      * 只有一個線程的線程池
      */
    public static ExecutorService newSingleThreadExecutor() {
        return new FinalizableDelegatedExecutorService
            (new ThreadPoolExecutor(1, 1,
                                    0L, TimeUnit.MILLISECONDS,
                                    new LinkedBlockingQueue<Runnable>()));
    }
     /**
      * 可變大小線程池
      */
    public static ExecutorService newCachedThreadPool() {
        return new ThreadPoolExecutor(0, Integer.MAX_VALUE,
                                      60L, TimeUnit.SECONDS,
                                      new SynchronousQueue<Runnable>());
    }
     /**
      *定時執(zhí)行的線程池
      */
    public static ScheduledExecutorService newScheduledThreadPool(int corePoolSize) {
        return new ScheduledThreadPoolExecutor(corePoolSize);
    }

我們可以看到這newFixedThreadPool()、newSingleThreadExecutor()、newCachedThreadPool()都是創(chuàng)建了一個ThreadPoolExecutor對象,而newScheduledThreadPool()則是創(chuàng)建了一個ScheduledThreadPoolExecutor對象,其實ScheduledThreadPoolExecutor也是繼承了ThreadPoolExecutor這個類,通過在ThreadPoolExecutor上擴展實現(xiàn)了定時執(zhí)行線程的功能。

ThreadPoolExecutor

我們先來看一下ThreadPoolExecutor的構(gòu)造方法:

    /**
     * Creates a new {@code ThreadPoolExecutor} with the given initial
     * parameters.
     *
     * @param corePoolSize the number of threads to keep in the pool, even
     *        if they are idle, unless {@code allowCoreThreadTimeOut} is set
     * @param maximumPoolSize the maximum number of threads to allow in the
     *        pool
     * @param keepAliveTime when the number of threads is greater than
     *        the core, this is the maximum time that excess idle threads
     *        will wait for new tasks before terminating.
     * @param unit the time unit for the {@code keepAliveTime} argument
     * @param workQueue the queue to use for holding tasks before they are
     *        executed.  This queue will hold only the {@code Runnable}
     *        tasks submitted by the {@code execute} method.
     * @param threadFactory the factory to use when the executor
     *        creates a new thread
     * @param handler the handler to use when execution is blocked
     *        because the thread bounds and queue capacities are reached
     * @throws IllegalArgumentException if one of the following holds:<br>
     *         {@code corePoolSize < 0}<br>
     *         {@code keepAliveTime < 0}<br>
     *         {@code maximumPoolSize <= 0}<br>
     *         {@code maximumPoolSize < corePoolSize}
     * @throws NullPointerException if {@code workQueue}
     *         or {@code threadFactory} or {@code handler} is null
     */
    public ThreadPoolExecutor(int corePoolSize,
                              int maximumPoolSize,
                              long keepAliveTime,
                              TimeUnit unit,
                              BlockingQueue<Runnable> workQueue,
                              ThreadFactory threadFactory,
                              RejectedExecutionHandler handler) {
        if (corePoolSize < 0 ||
            maximumPoolSize <= 0 ||
            maximumPoolSize < corePoolSize ||
            keepAliveTime < 0)
            throw new IllegalArgumentException();
        if (workQueue == null || threadFactory == null || handler == null)
            throw new NullPointerException();
        this.corePoolSize = corePoolSize;
        this.maximumPoolSize = maximumPoolSize;
        this.workQueue = workQueue;
        this.keepAliveTime = unit.toNanos(keepAliveTime);
        this.threadFactory = threadFactory;
        this.handler = handler;
    }

corePoolSize:線程池里最小線程數(shù)
maximumPoolSize:線程池里最大線程數(shù)
keepAliveTime:空閑線程存活的時間,也就是線程池的線程數(shù)超過corePoolSize后,空閑線程可以存活的時間,超過這個時間就會被銷毀。
unit: keepAliveTime的單位
workQueue:用來存放等待任務(wù)的隊列。這個隊列是個阻塞隊列
threadFactory:用來產(chǎn)生線程池里的線程的工廠
handler:當任務(wù)超過最大允許的任務(wù)數(shù)量后,新來任務(wù)的拒絕策略。
知道了上面幾個參數(shù),我們對ThreadPoolExecutor應(yīng)該有所了解,對Executors產(chǎn)生的不同功能的線程池也應(yīng)該有所了解。我們接下來討論一下ThreadPoolExecutor實現(xiàn)線程池的原理。
首先從提交任務(wù)的方法開始:

    /**
     * Executes the given task sometime in the future.  The task
     * may execute in a new thread or in an existing pooled thread.
     *
     * If the task cannot be submitted for execution, either because this
     * executor has been shutdown or because its capacity has been reached,
     * the task is handled by the current {@code RejectedExecutionHandler}.
     *執(zhí)行給定的任務(wù),這個任務(wù)可能在一個新的線程里執(zhí)行,也可能在一個已經(jīng)存在的線程里執(zhí)行
     *如果任務(wù)不能被提交,不管是因為executor被shutdown還是因為容量到達界限,任務(wù)都會被RejectedExecutionHandler(拒絕策略)處理。
     * @param command the task to execute
     * @throws RejectedExecutionException at discretion of
     *         {@code RejectedExecutionHandler}, if the task
     *         cannot be accepted for execution
     * @throws NullPointerException if {@code command} is null
     */
    public void execute(Runnable command) {
        if (command == null)
            throw new NullPointerException();
        /*
         * Proceed in 3 steps:
         *
         * 1. If fewer than corePoolSize threads are running, try to
         * start a new thread with the given command as its first
         * task.  The call to addWorker atomically checks runState and
         * workerCount, and so prevents false alarms that would add
         * threads when it shouldn't, by returning false.
         *
         * 2. If a task can be successfully queued, then we still need
         * to double-check whether we should have added a thread
         * (because existing ones died since last checking) or that
         * the pool shut down since entry into this method. So we
         * recheck state and if necessary roll back the enqueuing if
         * stopped, or start a new thread if there are none.
         *
         * 3. If we cannot queue task, then we try to add a new
         * thread.  If it fails, we know we are shut down or saturated
         * and so reject the task.
         */
        int c = ctl.get();
        if (workerCountOf(c) < corePoolSize) {
            if (addWorker(command, true))
                return;
            c = ctl.get();
        }
        if (isRunning(c) && workQueue.offer(command)) {
            int recheck = ctl.get();
            if (! isRunning(recheck) && remove(command))
                reject(command);
            else if (workerCountOf(recheck) == 0)
                addWorker(null, false);
        }
        else if (!addWorker(command, false))
            reject(command);
    }

首先看到這一行代碼:int c = ctl.get(); ctl是什么呢?我們來看一下關(guān)于ctl的定義:

    /**
     * The main pool control state, ctl, is an atomic integer packing
     * two conceptual fields
     *   workerCount, indicating the effective number of threads
     *   runState,    indicating whether running, shutting down etc
     *
     * In order to pack them into one int, we limit workerCount to
     * (2^29)-1 (about 500 million) threads rather than (2^31)-1 (2
     * billion) otherwise representable. If this is ever an issue in
     * the future, the variable can be changed to be an AtomicLong,
     * and the shift/mask constants below adjusted. But until the need
     * arises, this code is a bit faster and simpler using an int.
     *
     * The workerCount is the number of workers that have been
     * permitted to start and not permitted to stop.  The value may be
     * transiently different from the actual number of live threads,
     * for example when a ThreadFactory fails to create a thread when
     * asked, and when exiting threads are still performing
     * bookkeeping before terminating. The user-visible pool size is
     * reported as the current size of the workers set.
     *
     * The runState provides the main lifecycle control, taking on values:
     *
     *   RUNNING:  Accept new tasks and process queued tasks
     *   SHUTDOWN: Don't accept new tasks, but process queued tasks
     *   STOP:     Don't accept new tasks, don't process queued tasks,
     *             and interrupt in-progress tasks
     *   TIDYING:  All tasks have terminated, workerCount is zero,
     *             the thread transitioning to state TIDYING
     *             will run the terminated() hook method
     *   TERMINATED: terminated() has completed
     *
     * The numerical order among these values matters, to allow
     * ordered comparisons. The runState monotonically increases over
     * time, but need not hit each state. The transitions are:
     *
     * RUNNING -> SHUTDOWN
     *    On invocation of shutdown(), perhaps implicitly in finalize()
     * (RUNNING or SHUTDOWN) -> STOP
     *    On invocation of shutdownNow()
     * SHUTDOWN -> TIDYING
     *    When both queue and pool are empty
     * STOP -> TIDYING
     *    When pool is empty
     * TIDYING -> TERMINATED
     *    When the terminated() hook method has completed
     *
     * Threads waiting in awaitTermination() will return when the
     * state reaches TERMINATED.
     *
     * Detecting the transition from SHUTDOWN to TIDYING is less
     * straightforward than you'd like because the queue may become
     * empty after non-empty and vice versa during SHUTDOWN state, but
     * we can only terminate if, after seeing that it is empty, we see
     * that workerCount is 0 (which sometimes entails a recheck -- see
     * below).
     */
    private final AtomicInteger ctl = new AtomicInteger(ctlOf(RUNNING, 0));
    private static final int COUNT_BITS = Integer.SIZE - 3;
    private static final int CAPACITY   = (1 << COUNT_BITS) - 1;

    // runState is stored in the high-order bits
    private static final int RUNNING    = -1 << COUNT_BITS;
    private static final int SHUTDOWN   =  0 << COUNT_BITS;
    private static final int STOP       =  1 << COUNT_BITS;
    private static final int TIDYING    =  2 << COUNT_BITS;
    private static final int TERMINATED =  3 << COUNT_BITS;

    // Packing and unpacking ctl
    private static int runStateOf(int c)     { return c & ~CAPACITY; }
    private static int workerCountOf(int c)  { return c & CAPACITY; }
    private static int ctlOf(int rs, int wc) { return rs | wc; }

注釋已經(jīng)很清楚告訴我們ctl是workerCount和runSate的結(jié)合。我們可以看到,線程池的容量是CAPACITY(線程池中允許的最大線程數(shù)是CAPACITY),也就是2的Integer.SIZE-3次方減一。ctl用低29位表示線程池中的線程數(shù),用剩下的高3位表示線程池的運行狀態(tài)。這一點大家要理解清楚。這下面三個方法是對ctl的操作

    private static int runStateOf(int c)     { return c & ~CAPACITY; }  //獲取高三位,也就是線程池的運行狀態(tài)
    private static int workerCountOf(int c)  { return c & CAPACITY; }  //獲取低29位,也就是線程池線程的數(shù)量
    private static int ctlOf(int rs, int wc) { return rs | wc; }  //生成ctl

理解了這個之后,我們繼續(xù)回到execute方法,當一個任務(wù)被提交給線程池后,分三種情況:
1、當前線程池中線程的數(shù)量小于corePoolSize,這個時候我們直接創(chuàng)建一個新線程來執(zhí)行提交的任務(wù)。
2、當線程池中的線程數(shù)大于corePoolSize時,如果線程池的狀態(tài)是RUNNING狀態(tài),并且任務(wù)加到任務(wù)隊列成功,我們?nèi)匀灰俅螜z查一下線程池的狀態(tài),防止任務(wù)在添加到任務(wù)隊列的過程中線程池被停止。如果線程池沒有被停止,則調(diào)用addWorker方法嘗試再創(chuàng)建一個線程去處理任務(wù)隊列。這里只是去嘗試創(chuàng)建,并不一定能創(chuàng)建成功,具體addWorker的實現(xiàn)我們接下來會討論。
3、如果任務(wù)添加到任務(wù)隊列失敗,這個時候我們再次調(diào)用addWorker方法嘗試創(chuàng)建一個新線程來處理當前任務(wù),如果失敗,則說明線程池被shutdown或者線程池的任務(wù)隊列已經(jīng)滿了。
知道了一個任務(wù)被提交到線程池的處理流程之后,我們來看一下每個步驟的具體實現(xiàn)。首先是addWorker方法,我們來看一下具體實現(xiàn):

    private boolean addWorker(Runnable firstTask, boolean core) {
        retry:
        for (;;) {
            int c = ctl.get();
            int rs = runStateOf(c);

            // Check if queue empty only if necessary.
            if (rs >= SHUTDOWN &&
                ! (rs == SHUTDOWN &&
                   firstTask == null &&
                   ! workQueue.isEmpty()))
                return false;

            for (;;) {
                int wc = workerCountOf(c);
                if (wc >= CAPACITY ||
                    wc >= (core ? corePoolSize : maximumPoolSize))
                    return false;
                if (compareAndIncrementWorkerCount(c))
                    break retry;
                c = ctl.get();  // Re-read ctl
                if (runStateOf(c) != rs)
                    continue retry;
                // else CAS failed due to workerCount change; retry inner loop
            }
        }

        boolean workerStarted = false;
        boolean workerAdded = false;
        Worker w = null;
        try {
            w = new Worker(firstTask);
            final Thread t = w.thread;
            if (t != null) {
                final ReentrantLock mainLock = this.mainLock;
                mainLock.lock();
                try {
                    // Recheck while holding lock.
                    // Back out on ThreadFactory failure or if
                    // shut down before lock acquired.
                    int rs = runStateOf(ctl.get());

                    if (rs < SHUTDOWN ||
                        (rs == SHUTDOWN && firstTask == null)) {
                        if (t.isAlive()) // precheck that t is startable
                            throw new IllegalThreadStateException();
                        workers.add(w);
                        int s = workers.size();
                        if (s > largestPoolSize)
                            largestPoolSize = s;
                        workerAdded = true;
                    }
                } finally {
                    mainLock.unlock();
                }
                if (workerAdded) {
                    t.start();
                    workerStarted = true;
                }
            }
        } finally {
            if (! workerStarted)
                addWorkerFailed(w);
        }
        return workerStarted;
    }

首先進入retry循環(huán)體,這個循環(huán)體的功能是去判斷線程池是否可以新創(chuàng)建線程。首先線程池的狀態(tài)如果大于SHUTDOWN狀態(tài),就不允許新創(chuàng)建線程(STOP狀態(tài):不再接受新任務(wù)也不處理任務(wù)隊列里的任務(wù),中斷正在進行的任務(wù);TIDYING:所有的任務(wù)被結(jié)束,workerCount被設(shè)置為0,線程狀態(tài)被轉(zhuǎn)變成TIDYING將會調(diào)用terminated()鉤子方法;TERMINATED:線程調(diào)用完terminated()方法)。如果線程池的狀態(tài)是SHUTDOWN狀態(tài),因為我們通過executor方法傳進來的任務(wù)不是空,所以,這個時候會返回false,不回去了創(chuàng)建新的線程了。也就是說,只有線程池處于RUNNING的時候才有創(chuàng)建新線程的機會。然后判斷當前線程數(shù)是否超過了線程池的最大容量,如果是則返回false不允許創(chuàng)建。然后通過CAS操作將workerCount加一,如果成功則跳出循環(huán)創(chuàng)建線程池,如果失敗,再次判斷線程池的狀態(tài)和進入方法時的狀態(tài)是否一致,如果不一致則重新執(zhí)行retry循環(huán)體,如果一致,則重新判斷線程池容量,決定是否能夠創(chuàng)建新的線程。
如果通過以上判斷,允許創(chuàng)建新的線程,則新創(chuàng)建一個Worker對象。Worker是個什么東西呢?我們來看一下:

    private final class Worker
        extends AbstractQueuedSynchronizer
        implements Runnable
    {
        /**
         * This class will never be serialized, but we provide a
         * serialVersionUID to suppress a javac warning.
         */
        private static final long serialVersionUID = 6138294804551838833L;

        /** Thread this worker is running in.  Null if factory fails. */
        final Thread thread;
        /** Initial task to run.  Possibly null. */
        Runnable firstTask;
        /** Per-thread task counter */
        volatile long completedTasks;

        /**
         * Creates with given first task and thread from ThreadFactory.
         * @param firstTask the first task (null if none)
         */
        Worker(Runnable firstTask) {
            setState(-1); // inhibit interrupts until runWorker
            this.firstTask = firstTask;
            this.thread = getThreadFactory().newThread(this);
        }

        /** Delegates main run loop to outer runWorker  */
        public void run() {
            runWorker(this);
        }

        // Lock methods
        //
        // The value 0 represents the unlocked state.
        // The value 1 represents the locked state.

        protected boolean isHeldExclusively() {
            return getState() != 0;
        }

        protected boolean tryAcquire(int unused) {
            if (compareAndSetState(0, 1)) {
                setExclusiveOwnerThread(Thread.currentThread());
                return true;
            }
            return false;
        }

        protected boolean tryRelease(int unused) {
            setExclusiveOwnerThread(null);
            setState(0);
            return true;
        }

        public void lock()        { acquire(1); }
        public boolean tryLock()  { return tryAcquire(1); }
        public void unlock()      { release(1); }
        public boolean isLocked() { return isHeldExclusively(); }

        void interruptIfStarted() {
            Thread t;
            if (getState() >= 0 && (t = thread) != null && !t.isInterrupted()) {
                try {
                    t.interrupt();
                } catch (SecurityException ignore) {
                }
            }
        }
    }

我們先看一下Worker的構(gòu)造方法:當創(chuàng)建Worker對象的時候,會通過我們之前設(shè)置的ThreadFactory的newThread方法來創(chuàng)建一個線程,并交給Worker對象持有。我們來看一下默認的線程池的實現(xiàn):

public Thread newThread(Runnable r) {
            Thread t = new Thread(group, r,
                                  namePrefix + threadNumber.getAndIncrement(),
                                  0);
            if (t.isDaemon())
                t.setDaemon(false);
            if (t.getPriority() != Thread.NORM_PRIORITY)
                t.setPriority(Thread.NORM_PRIORITY);
            return t;
        }

在調(diào)用該方法的時候,會把Worker對象本身傳入,我們可以看到Worker實現(xiàn)了Runnable接口。所以當線程啟動的時候會調(diào)用的是Worker的run()方法。而Worker的run()方法調(diào)用了外部類的runWorker方法,我們看一下這個方法:

    final void runWorker(Worker w) {
        Thread wt = Thread.currentThread();
        Runnable task = w.firstTask;
        w.firstTask = null;
        w.unlock(); // allow interrupts
        boolean completedAbruptly = true;
        try {
            while (task != null || (task = getTask()) != null) {
                w.lock();
                // If pool is stopping, ensure thread is interrupted;
                // if not, ensure thread is not interrupted.  This
                // requires a recheck in second case to deal with
                // shutdownNow race while clearing interrupt
                if ((runStateAtLeast(ctl.get(), STOP) ||
                     (Thread.interrupted() &&
                      runStateAtLeast(ctl.get(), STOP))) &&
                    !wt.isInterrupted())
                    wt.interrupt();
                try {
                    beforeExecute(wt, task);
                    Throwable thrown = null;
                    try {
                        task.run();
                    } catch (RuntimeException x) {
                        thrown = x; throw x;
                    } catch (Error x) {
                        thrown = x; throw x;
                    } catch (Throwable x) {
                        thrown = x; throw new Error(x);
                    } finally {
                        afterExecute(task, thrown);
                    }
                } finally {
                    task = null;
                    w.completedTasks++;
                    w.unlock();
                }
            }
            completedAbruptly = false;
        } finally {
            processWorkerExit(w, completedAbruptly);
        }
    }

這個方法才是線程池處理任務(wù)的整個核心內(nèi)容,進入方法后,會進入一個循環(huán)體:首先獲取要執(zhí)行的任務(wù),如果當前Worker持有的任務(wù)不是空,獲取的就是該任務(wù),如果是空,就調(diào)用getTask()方法來獲取任務(wù)隊列里的任務(wù)。這個方法也是實現(xiàn)線程池中空閑線程銷毀的關(guān)鍵。我們來看一下它的內(nèi)部實現(xiàn):

    private Runnable getTask() {
        boolean timedOut = false; // Did the last poll() time out?

        for (;;) {
            int c = ctl.get();
            int rs = runStateOf(c);

            // Check if queue empty only if necessary.
            if (rs >= SHUTDOWN && (rs >= STOP || workQueue.isEmpty())) {
                decrementWorkerCount();
                return null;
            }

            int wc = workerCountOf(c);

            // Are workers subject to culling?
            boolean timed = allowCoreThreadTimeOut || wc > corePoolSize;

            if ((wc > maximumPoolSize || (timed && timedOut))
                && (wc > 1 || workQueue.isEmpty())) {
                if (compareAndDecrementWorkerCount(c))
                    return null;
                continue;
            }

            try {
                Runnable r = timed ?
                    workQueue.poll(keepAliveTime, TimeUnit.NANOSECONDS) :
                    workQueue.take();
                if (r != null)
                    return r;
                timedOut = true;
            } catch (InterruptedException retry) {
                timedOut = false;
            }
        }
    }

進入方法的時候先定義一個標識位timedOut,這個標識位用來表示從任務(wù)隊列中獲取任務(wù)是否超時。如果超時,說明這段時間沒有新任務(wù)過來,這個線程也就是空閑的,如果當前線程數(shù)大于corePoolSize,這個線程就會被銷毀。我們來看一下這個過程是怎么實現(xiàn)的:當設(shè)置標識位之后,進入一個循環(huán)體,來判斷當前的線程池的狀態(tài),如果當前線程池的狀態(tài)大于等于STOP,方法直接返回null,返回nulll是什么概念呢?我們回到runWorker方法看一下,當getTask()返回null的時候,while循環(huán)結(jié)束,執(zhí)行finall語句塊里的processWorkerExit方法。執(zhí)行完這個方法后線程就會結(jié)束,也就是這個線程會被銷毀。我們繼續(xù)回到getTask()方法,當前線程池的狀態(tài)大于等于STOP時,不管任務(wù)隊列里是否有任務(wù)都不會獲取到任務(wù),線程會被銷毀。當線程池狀態(tài)是RUNNING狀態(tài)的時候會繼續(xù)接下來的判斷,當線程池狀態(tài)是SHUTDOWN的時候要去判斷任務(wù)隊列是否為空,如果是空就返回null,銷毀線程,如果不是空繼續(xù)接下來的操作。
當進行完上面的判斷后,在設(shè)置一個標識位timed,這個標識位用來表示當獲取任務(wù)超時后是否需要銷毀線程。然后進入if ((wc > maximumPoolSize || (timed && timedOut))這個判斷,如果當前線程數(shù)大于maximumPoolSize,說明線程被創(chuàng)建多了,這個時候要銷毀線程,直接返回null。如果獲取任務(wù)超時(第一次進入這個循環(huán)的時候肯定不存在這種情況,因為timedOut標識位被設(shè)置成了false),并且當前線程池里面的線程數(shù)大于1(因為要保證線程池里必須至少有一個線程)、任務(wù)隊列是空的時候,返回null銷毀線程。
結(jié)束以上判斷的時候就要去任務(wù)隊列取任務(wù),如果timed標識位(表示當獲取任務(wù)超時后是否需要銷毀線程)是ture,就需要在給定時間內(nèi)獲取任務(wù),不然就會返回null,如果返回null,就設(shè)置timedOut標識位為ture,表示獲取任務(wù)超時,當前線程是空閑線程。等到下次循環(huán)的時候就會結(jié)束方法返回null。如果正常獲取任務(wù)就講任務(wù)返回。到此getTask()的分析結(jié)束,我們做一個小小的總結(jié):如果線程池狀態(tài)大于STOP,直接返回null銷毀線程;如果當前線程池狀態(tài)是SHUTDOWN并且任務(wù)隊列是空,返回null銷毀線程;如果不是以上兩種情況,再判斷線程池是否設(shè)置了空閑線程銷毀,如果是的話,并且從任務(wù)隊列中獲取任務(wù)超時,就返回null銷毀線程;如果不是就返回獲取的線程。
當獲取到任務(wù)之后,就去判斷當前線程池是否被stop,如果是,中斷當前線程,如果不是,就調(diào)用interrupted()方法取消中斷標志。這一步是用來防止成功獲取任務(wù)之后線程池被中斷。
當做完 以上檢查之后,調(diào)用beforeExecute(wt, task)方法,來執(zhí)行前置操作,這個方法是個模板方法,交由子類實現(xiàn)。之后會執(zhí)行任務(wù)的run方法,真正的執(zhí)行任務(wù)。執(zhí)行完任務(wù)之后會調(diào)用 afterExecute(task, thrown)方法來執(zhí)行后置操作,這個方法也是模板方法。執(zhí)行完之后,會再次去獲取任務(wù)執(zhí)行以上操作。getTask()方法返回null的時候,會調(diào)用processWorkerExit(w, completedAbruptly)方法,這個方法做了講當前的worker對象從線程池中去除等操作(有可能還會重新創(chuàng)建一個線程)。有興趣的同學(xué)可以看一下。
到此Worker分析結(jié)束,我們繼續(xù)回到addWorker方法,當我們創(chuàng)建一個Worker對象后,講worker對象添加到workers容器里。然后啟動worker對象持有的線程。也就是用來處理任務(wù)的線程。
到此,線程池添加任務(wù)、處理任務(wù)的分析結(jié)束。

最后編輯于
?著作權(quán)歸作者所有,轉(zhuǎn)載或內(nèi)容合作請聯(lián)系作者
平臺聲明:文章內(nèi)容(如有圖片或視頻亦包括在內(nèi))由作者上傳并發(fā)布,文章內(nèi)容僅代表作者本人觀點,簡書系信息發(fā)布平臺,僅提供信息存儲服務(wù)。

推薦閱讀更多精彩內(nèi)容