用Python多線程實現生產者消費者模式

什么是生產者消費者模式

在軟件開發的過程中,經常碰到這樣的場景:
某些模塊負責生產數據,這些數據由其他模塊來負責處理(此處的模塊可能是:函數、線程、進程等)。產生數據的模塊稱為生產者,而處理數據的模塊稱為消費者。在生產者與消費者之間的緩沖區稱之為倉庫。生產者負責往倉庫運輸商品,而消費者負責從倉庫里取出商品,這就構成了生產者消費者模式。

結構圖如下

為了大家容易理解,我們舉一個寄信的例子。假設你要寄一封信,大致過程如下:
 1、你把信寫好——相當于生產者生產數據
 2、你把信放入郵箱——相當于生產者把數據放入緩沖區
 3、郵遞員把信從郵箱取出,做相應處理——相當于消費者把數據取出緩沖區,處理數據

生產者消費者模式的優點

  • 解耦
    假設生產者和消費者分別是兩個線程。如果讓生產者直接調用消費者的某個方法,那么生產者對于消費者就會產生依賴(也就是耦合)。如果未來消費者的代碼發生變化,可能會影響到生產者的代碼。而如果兩者都依賴于某個緩沖區,兩者之間不直接依賴,耦合也就相應降低了。

舉個例子,我們去郵局投遞信件,如果不使用郵箱(也就是緩沖區),你必須得把信直接交給郵遞員。有同學會說,直接給郵遞員不是挺簡單的嘛?其實不簡單,你必須 得認識誰是郵遞員,才能把信給他。這就產生了你和郵遞員之間的依賴(相當于生產者和消費者的強耦合)。萬一哪天郵遞員 換人了,你還要重新認識一下(相當于消費者變化導致修改生產者代碼)。而郵箱相對來說比較固定,你依賴它的成本就比較低(相當于和緩沖區之間的弱耦合)。

  • 并發
    由于生產者與消費者是兩個獨立的并發體,他們之間是用緩沖區通信的,生產者只需要往緩沖區里丟數據,就可以繼續生產下一個數據,而消費者只需要從緩沖區拿數據即可,這樣就不會因為彼此的處理速度而發生阻塞。

繼續上面的例子,如果我們不使用郵箱,就得在郵局等郵遞員,直到他回來,把信件交給他,這期間我們啥事兒都不能干(也就是生產者阻塞)。或者郵遞員得挨家挨戶問,誰要寄信(相當于消費者輪詢)。

  • 支持忙閑不均
    當生產者制造數據快的時候,消費者來不及處理,未處理的數據可以暫時存在緩沖區中,慢慢處理掉。而不至于因為消費者的性能造成數據丟失或影響生產者生產。

我們再拿寄信的例子,假設郵遞員一次只能帶走1000封信,萬一碰上情人節(或是圣誕節)送賀卡,需要寄出去的信超過了1000封,這時候郵箱這個緩沖區就派上用場了。郵遞員把來不及帶走的信暫存在郵箱中,等下次過來時再拿走。

通過上面的介紹大家應該已經明白了生產者消費者模式。

Python中的多線程編程

在實現生產者消費者模式之前,我們先學習下Python中的多線程編程。
線程是操作系統直接支持的執行單元,高級語言通常都內置多線程的支持,Python也不例外,并且Python的線程是真正的Posix Thread,而不是模擬出來的線程。
Python的標準庫提供了兩個模塊:_thread和threading,_thread是低級模塊,threading是高級模塊,對_thread進行了封裝。絕大多數情況下,我們只需要使用threading這個高級模塊。

下面我們先看一段在Python中實現多線程的代碼。

import time,threading
#線程代碼
class TaskThread(threading.Thread):
    def __init__(self,name):
        threading.Thread.__init__(self,name=name)
    def run(self):
        print('thread %s is running...' % self.getName())

        for i in range(6):
            print('thread %s >>> %s' % (self.getName(), i))
            time.sleep(1)

        print('thread %s finished.' % self.getName())

taskthread = TaskThread('TaskThread')
taskthread.start()
taskthread.join()

下面是程序的執行結果:

thread TaskThread is running...
thread TaskThread >>> 0
thread TaskThread >>> 1
thread TaskThread >>> 2
thread TaskThread >>> 3
thread TaskThread >>> 4
thread TaskThread >>> 5
thread TaskThread finished.

TaskThread類繼承自threading模塊中的Thread線程類。構造函數的name參數指定線程的名字,通過重載基類run函數實現具體任務。

在簡單熟悉了Python的線程后,下面我們實現一個生產者消費者模shi。

from Queue import Queue
import random,threading,time

#生產者類
class Producer(threading.Thread):
    def __init__(self, name,queue):
        threading.Thread.__init__(self, name=name)
        self.data=queue

    def run(self):
        for i in range(5):
            print("%s is producing %d to the queue!" % (self.getName(), i))
            self.data.put(i)
            time.sleep(random.randrange(10)/5)
        print("%s finished!" % self.getName())

#消費者類
class Consumer(threading.Thread):
    def __init__(self,name,queue):
        threading.Thread.__init__(self,name=name)
        self.data=queue
    def run(self):
        for i in range(5):
            val = self.data.get()
            print("%s is consuming. %d in the queue is consumed!" % (self.getName(),val))
            time.sleep(random.randrange(10))
        print("%s finished!" % self.getName())

def main():
    queue = Queue()
    producer = Producer('Producer',queue)
    consumer = Consumer('Consumer',queue)

    producer.start()
    consumer.start()

    producer.join()
    consumer.join()
    print 'All threads finished!'

if __name__ == '__main__':
    main()

執行結果可能如下:

Producer is producing 0 to the queue!
Consumer is consuming. 0 in the queue is consumed!
Producer is producing 1 to the queue!
Producer is producing 2 to the queue!
Consumer is consuming. 1 in the queue is consumed!
Consumer is consuming. 2 in the queue is consumed!
Producer is producing 3 to the queue!
Producer is producing 4 to the queue!
Producer finished!
Consumer is consuming. 3 in the queue is consumed!
Consumer is consuming. 4 in the queue is consumed!
Consumer finished!
All threads finished!

因為多線程是搶占式執行的,所以打印出的運行結果不一定和上面的完全一致。

小結

本例通過Python實現了一個簡單的生產者消費者模型。Python中的Queue模塊已經提供了對線程同步的支持,所以本文并沒有涉及鎖、同步、死鎖等多線程問題。

最后編輯于
?著作權歸作者所有,轉載或內容合作請聯系作者
平臺聲明:文章內容(如有圖片或視頻亦包括在內)由作者上傳并發布,文章內容僅代表作者本人觀點,簡書系信息發布平臺,僅提供信息存儲服務。
  • 序言:七十年代末,一起剝皮案震驚了整個濱河市,隨后出現的幾起案子,更是在濱河造成了極大的恐慌,老刑警劉巖,帶你破解...
    沈念sama閱讀 230,002評論 6 542
  • 序言:濱河連續發生了三起死亡事件,死亡現場離奇詭異,居然都是意外死亡,警方通過查閱死者的電腦和手機,發現死者居然都...
    沈念sama閱讀 99,400評論 3 429
  • 文/潘曉璐 我一進店門,熙熙樓的掌柜王于貴愁眉苦臉地迎上來,“玉大人,你說我怎么就攤上這事。” “怎么了?”我有些...
    開封第一講書人閱讀 178,136評論 0 383
  • 文/不壞的土叔 我叫張陵,是天一觀的道長。 經常有香客問我,道長,這世上最難降的妖魔是什么? 我笑而不...
    開封第一講書人閱讀 63,714評論 1 317
  • 正文 為了忘掉前任,我火速辦了婚禮,結果婚禮上,老公的妹妹穿的比我還像新娘。我一直安慰自己,他們只是感情好,可當我...
    茶點故事閱讀 72,452評論 6 412
  • 文/花漫 我一把揭開白布。 她就那樣靜靜地躺著,像睡著了一般。 火紅的嫁衣襯著肌膚如雪。 梳的紋絲不亂的頭發上,一...
    開封第一講書人閱讀 55,818評論 1 328
  • 那天,我揣著相機與錄音,去河邊找鬼。 笑死,一個胖子當著我的面吹牛,可吹牛的內容都是我干的。 我是一名探鬼主播,決...
    沈念sama閱讀 43,812評論 3 446
  • 文/蒼蘭香墨 我猛地睜開眼,長吁一口氣:“原來是場噩夢啊……” “哼!你這毒婦竟也來了?” 一聲冷哼從身側響起,我...
    開封第一講書人閱讀 42,997評論 0 290
  • 序言:老撾萬榮一對情侶失蹤,失蹤者是張志新(化名)和其女友劉穎,沒想到半個月后,有當地人在樹林里發現了一具尸體,經...
    沈念sama閱讀 49,552評論 1 335
  • 正文 獨居荒郊野嶺守林人離奇死亡,尸身上長有42處帶血的膿包…… 初始之章·張勛 以下內容為張勛視角 年9月15日...
    茶點故事閱讀 41,292評論 3 358
  • 正文 我和宋清朗相戀三年,在試婚紗的時候發現自己被綠了。 大學時的朋友給我發了我未婚夫和他白月光在一起吃飯的照片。...
    茶點故事閱讀 43,510評論 1 374
  • 序言:一個原本活蹦亂跳的男人離奇死亡,死狀恐怖,靈堂內的尸體忽然破棺而出,到底是詐尸還是另有隱情,我是刑警寧澤,帶...
    沈念sama閱讀 39,035評論 5 363
  • 正文 年R本政府宣布,位于F島的核電站,受9級特大地震影響,放射性物質發生泄漏。R本人自食惡果不足惜,卻給世界環境...
    茶點故事閱讀 44,721評論 3 348
  • 文/蒙蒙 一、第九天 我趴在偏房一處隱蔽的房頂上張望。 院中可真熱鬧,春花似錦、人聲如沸。這莊子的主人今日做“春日...
    開封第一講書人閱讀 35,121評論 0 28
  • 文/蒼蘭香墨 我抬頭看了看天上的太陽。三九已至,卻和暖如春,著一層夾襖步出監牢的瞬間,已是汗流浹背。 一陣腳步聲響...
    開封第一講書人閱讀 36,429評論 1 294
  • 我被黑心中介騙來泰國打工, 沒想到剛下飛機就差點兒被人妖公主榨干…… 1. 我叫王不留,地道東北人。 一個月前我還...
    沈念sama閱讀 52,235評論 3 398
  • 正文 我出身青樓,卻偏偏與公主長得像,于是被迫代替她去往敵國和親。 傳聞我的和親對象是個殘疾皇子,可洞房花燭夜當晚...
    茶點故事閱讀 48,480評論 2 379

推薦閱讀更多精彩內容