這一篇我們來分析一下將 multi-scale deformable attention 取代self-attention的transformer的構(gòu)造。
首先來看一下編碼器部分Encoder
class DeformableTransformerEncoderLayer(nn.Module):
def __init__(self,
d_model=256, d_ffn=1024,
dropout=0.1, activation="relu",
n_levels=4, n_heads=8, n_points=4):
super().__init__()
# self attention
self.self_attn = MSDeformAttn(d_model, n_levels, n_heads, n_points)
self.dropout1 = nn.Dropout(dropout)
self.norm1 = nn.LayerNorm(d_model)
# ffn
self.linear1 = nn.Linear(d_model, d_ffn)
self.activation = _get_activation_fn(activation)
self.dropout2 = nn.Dropout(dropout)
self.linear2 = nn.Linear(d_ffn, d_model)
self.dropout3 = nn.Dropout(dropout)
self.norm2 = nn.LayerNorm(d_model)
@staticmethod
def with_pos_embed(tensor, pos):
return tensor if pos is None else tensor + pos
def forward_ffn(self, src):
src2 = self.linear2(self.dropout2(self.activation(self.linear1(src))))
src = src + self.dropout3(src2)
src = self.norm2(src)
return src
def forward(self, src, pos, reference_points, spatial_shapes, level_start_index, padding_mask=None):
# self attention
src2 = self.self_attn(self.with_pos_embed(src, pos), reference_points, src, spatial_shapes, level_start_index, padding_mask)
src = src + self.dropout1(src2)
src = self.norm1(src)
# ffn
src = self.forward_ffn(src)
return src
實(shí)現(xiàn)過程如下圖所示。multi-head self-attention使用MSDeformAttn
構(gòu)造,然后兩個(gè)線性層定義了FFN模塊, Norm是nn.LayerNorm
, Add表示跨層鏈接, 中間使用了多層dropout層。
self_attn
即MSDeformAttn
得輸入為:
- query 每個(gè)query的特征,在encoder里是每一個(gè)level中每個(gè)位置點(diǎn)的特征
- reference_points batch_size x query個(gè)數(shù) x level個(gè)數(shù) x 2 ,每個(gè)query每個(gè)level的位置點(diǎn),歸一化之后的點(diǎn),encoder里是每個(gè)level的位置點(diǎn)歸一化之后的位置
- src backbone的輸出,可能是多個(gè)stage,是cat之后再flatten的結(jié)果
- spatial_shapes 每個(gè)level的featmap尺寸
- level_start_index 每個(gè)level在flatten的特征向量集上的起始索引
- padding_mask 考慮所有l(wèi)evel,每個(gè)位置是否mask的標(biāo)志。
上面定義的是每一個(gè)encoder layer的實(shí)現(xiàn), transformer中的Encoder是多個(gè)相同結(jié)構(gòu)的Encode layer的串聯(lián)。所以Encoder定義如下:
class DeformableTransformerEncoder(nn.Module):
def __init__(self, encoder_layer, num_layers):
super().__init__()
self.layers = _get_clones(encoder_layer, num_layers)
self.num_layers = num_layers # 堆疊的個(gè)數(shù)
@staticmethod
def get_reference_points(spatial_shapes, valid_ratios, device):
reference_points_list = []
for lvl, (H_, W_) in enumerate(spatial_shapes):
ref_y, ref_x = torch.meshgrid(torch.linspace(0.5, H_ - 0.5, H_, dtype=torch.float32, device=device),
torch.linspace(0.5, W_ - 0.5, W_, dtype=torch.float32, device=device))
ref_y = ref_y.reshape(-1)[None] / (valid_ratios[:, None, lvl, 1] * H_)
ref_x = ref_x.reshape(-1)[None] / (valid_ratios[:, None, lvl, 0] * W_)
ref = torch.stack((ref_x, ref_y), -1)
reference_points_list.append(ref)
reference_points = torch.cat(reference_points_list, 1)
reference_points = reference_points[:, :, None] * valid_ratios[:, None]
return reference_points
def forward(self, src, spatial_shapes, level_start_index, valid_ratios, pos=None, padding_mask=None):
output = src
reference_points = self.get_reference_points(spatial_shapes, valid_ratios, device=src.device)
for _, layer in enumerate(self.layers):
output = layer(output, pos, reference_points, spatial_shapes, level_start_index, padding_mask)
return output
這里的_get_clones()
函數(shù)時(shí)結(jié)構(gòu)的深度復(fù)制,即參數(shù)是不同的。
def _get_clones(module, N):
return nn.ModuleList([copy.deepcopy(module) for i in range(N)])
forward
里面即順序執(zhí)行的過程,主要要理解的是reference_points的定義。其實(shí)就是計(jì)算每個(gè)level中每個(gè)網(wǎng)格點(diǎn)的位置,這里的位置采用的是網(wǎng)格的中心點(diǎn)。這里有一個(gè)變量valid_ratios
需要解釋一下,query的個(gè)數(shù)是所有的像素位置,包括不同的level, 那么每個(gè)query都需要在不同的level上采點(diǎn),所以需要每個(gè)reference_point在每個(gè)level上映射后的點(diǎn),所以這里的valid_ratios在計(jì)算時(shí)就是公式2里的函數(shù)。于是reference_points的size為
,總共有
個(gè)queries。
接下來是編碼器部分Decoder
class DeformableTransformerDecoderLayer(nn.Module):
def __init__(self, d_model=256, d_ffn=1024,
dropout=0.1, activation="relu",
n_levels=4, n_heads=8, n_points=4):
super().__init__()
# cross attention
self.cross_attn = MSDeformAttn(d_model, n_levels, n_heads, n_points)
self.dropout1 = nn.Dropout(dropout)
self.norm1 = nn.LayerNorm(d_model)
# self attention
self.self_attn = nn.MultiheadAttention(d_model, n_heads, dropout=dropout)
self.dropout2 = nn.Dropout(dropout)
self.norm2 = nn.LayerNorm(d_model)
# ffn
self.linear1 = nn.Linear(d_model, d_ffn)
self.activation = _get_activation_fn(activation)
self.dropout3 = nn.Dropout(dropout)
self.linear2 = nn.Linear(d_ffn, d_model)
self.dropout4 = nn.Dropout(dropout)
self.norm3 = nn.LayerNorm(d_model)
@staticmethod
def with_pos_embed(tensor, pos):
return tensor if pos is None else tensor + pos
def forward_ffn(self, tgt):
tgt2 = self.linear2(self.dropout3(self.activation(self.linear1(tgt))))
tgt = tgt + self.dropout4(tgt2)
tgt = self.norm3(tgt)
return tgt
def forward(self, tgt, query_pos, reference_points, src, src_spatial_shapes, level_start_index, src_padding_mask=None):
# self attention
q = k = self.with_pos_embed(tgt, query_pos)
tgt2 = self.self_attn(q.transpose(0, 1), k.transpose(0, 1), tgt.transpose(0, 1))[0].transpose(0, 1)
tgt = tgt + self.dropout2(tgt2)
tgt = self.norm2(tgt)
# cross attention
tgt2 = self.cross_attn(self.with_pos_embed(tgt, query_pos),
reference_points,
src, src_spatial_shapes, level_start_index, src_padding_mask)
tgt = tgt + self.dropout1(tgt2)
tgt = self.norm1(tgt)
# ffn
tgt = self.forward_ffn(tgt)
return tgt
編碼部分如下圖所示,每個(gè)layer中包含兩個(gè)部分,即query之間的self-attention,以及query與key之間的cross-attention.
self-attention由nn.MultiheadAttention
實(shí)現(xiàn),這里的pos表示的是query之間的位置編碼。cross-attention調(diào)用的MSDeformAttn, 其輸入的query不再是所有的像素位置,而src,src_spatial_shapes依然是所有的level。
class DeformableTransformerDecoder(nn.Module):
def __init__(self, decoder_layer, num_layers, return_intermediate=False):
super().__init__()
self.layers = _get_clones(decoder_layer, num_layers)
self.num_layers = num_layers
self.return_intermediate = return_intermediate
# hack implementation for iterative bounding box refinement and two-stage Deformable DETR
self.bbox_embed = None
self.class_embed = None
def forward(self, tgt, reference_points, src, src_spatial_shapes, src_level_start_index, src_valid_ratios,
query_pos=None, src_padding_mask=None):
output = tgt
intermediate = []
intermediate_reference_points = []
for lid, layer in enumerate(self.layers):
if reference_points.shape[-1] == 4:
reference_points_input = reference_points[:, :, None] \
* torch.cat([src_valid_ratios, src_valid_ratios], -1)[:, None]
else:
assert reference_points.shape[-1] == 2
reference_points_input = reference_points[:, :, None] * src_valid_ratios[:, None]
output = layer(output, query_pos, reference_points_input, src, src_spatial_shapes, src_level_start_index, src_padding_mask)
# hack implementation for iterative bounding box refinement
if self.bbox_embed is not None:
tmp = self.bbox_embed[lid](output)
if reference_points.shape[-1] == 4:
new_reference_points = tmp + inverse_sigmoid(reference_points)
new_reference_points = new_reference_points.sigmoid()
else:
assert reference_points.shape[-1] == 2
new_reference_points = tmp
new_reference_points[..., :2] = tmp[..., :2] + inverse_sigmoid(reference_points)
new_reference_points = new_reference_points.sigmoid()
reference_points = new_reference_points.detach()
if self.return_intermediate:
intermediate.append(output)
intermediate_reference_points.append(reference_points)
if self.return_intermediate:
return torch.stack(intermediate), torch.stack(intermediate_reference_points)
return output, reference_points
用decoderLayer搭建decoder的過程即順序執(zhí)行的過程,每次cross-attention的key和value都來自于相同的量,即encoder的多個(gè)level的輸出。這里還定義了兩個(gè)改進(jìn)的接口,即box迭代細(xì)化和兩階段DETR。
Transformer
這部分是最終把Encoder和Decoder組裝起來的過程。
class DeformableTransformer(nn.Module):
def __init__(self, d_model=256, nhead=8,
num_encoder_layers=6, num_decoder_layers=6, dim_feedforward=1024, dropout=0.1,
activation="relu", return_intermediate_dec=False,
num_feature_levels=4, dec_n_points=4, enc_n_points=4,
two_stage=False, two_stage_num_proposals=300):
super().__init__()
self.d_model = d_model
self.nhead = nhead
self.two_stage = two_stage
self.two_stage_num_proposals = two_stage_num_proposals
encoder_layer = DeformableTransformerEncoderLayer(d_model, dim_feedforward,
dropout, activation,
num_feature_levels, nhead, enc_n_points)
self.encoder = DeformableTransformerEncoder(encoder_layer, num_encoder_layers)
decoder_layer = DeformableTransformerDecoderLayer(d_model, dim_feedforward,
dropout, activation,
num_feature_levels, nhead, dec_n_points)
self.decoder = DeformableTransformerDecoder(decoder_layer, num_decoder_layers, return_intermediate_dec)
self.level_embed = nn.Parameter(torch.Tensor(num_feature_levels, d_model))
if two_stage:
self.enc_output = nn.Linear(d_model, d_model)
self.enc_output_norm = nn.LayerNorm(d_model)
self.pos_trans = nn.Linear(d_model * 2, d_model * 2)
self.pos_trans_norm = nn.LayerNorm(d_model * 2)
else:
self.reference_points = nn.Linear(d_model, 2)
self._reset_parameters()
這里出現(xiàn)了幾個(gè)變量two_stage
, two_stage_num_proposals
, 'level_embed', reference_points
以及two_stage的提取proposal過程。
看看其在forward
中的作用:
def forward(self, srcs, masks, pos_embeds, query_embed=None):
assert self.two_stage or query_embed is not None
# prepare input for encoder
src_flatten = []
mask_flatten = []
lvl_pos_embed_flatten = []
spatial_shapes = []
for lvl, (src, mask, pos_embed) in enumerate(zip(srcs, masks, pos_embeds)):
bs, c, h, w = src.shape
spatial_shape = (h, w)
spatial_shapes.append(spatial_shape)
src = src.flatten(2).transpose(1, 2) # bs x c x h x w -> bs x c x hw -> bs x hw x c
mask = mask.flatten(1) # bs x hw
pos_embed = pos_embed.flatten(2).transpose(1, 2) # bs x c x h x w -> bs x c x hw -> bs x hw x c
lvl_pos_embed = pos_embed + self.level_embed[lvl].view(1, 1, -1) # bs x hw x c + 1 x 1 x c, 每一level提供一個(gè)可學(xué)習(xí)的編碼
lvl_pos_embed_flatten.append(lvl_pos_embed) # 分別flatten之后append,方便encoder調(diào)用,即所有的keys
src_flatten.append(src)
mask_flatten.append(mask)
src_flatten = torch.cat(src_flatten, 1)
mask_flatten = torch.cat(mask_flatten, 1)
lvl_pos_embed_flatten = torch.cat(lvl_pos_embed_flatten, 1)
spatial_shapes = torch.as_tensor(spatial_shapes, dtype=torch.long, device=src_flatten.device)
level_start_index = torch.cat((spatial_shapes.new_zeros((1, )), spatial_shapes.prod(1).cumsum(0)[:-1]))
valid_ratios = torch.stack([self.get_valid_ratio(m) for m in masks], 1) # bs x num_level x 2
# encoder
memory = self.encoder(src_flatten, spatial_shapes, level_start_index, valid_ratios, lvl_pos_embed_flatten, mask_flatten)
# prepare input for decoder
bs, _, c = memory.shape
if self.two_stage:
output_memory, output_proposals = self.gen_encoder_output_proposals(memory, mask_flatten, spatial_shapes)
# hack implementation for two-stage Deformable DETR
enc_outputs_class = self.decoder.class_embed[self.decoder.num_layers](output_memory) # 預(yù)測(cè)輸出的score
enc_outputs_coord_unact = self.decoder.bbox_embed[self.decoder.num_layers](output_memory) + output_proposals # 編碼后的anchor+相對(duì)偏差
topk = self.two_stage_num_proposals
topk_proposals = torch.topk(enc_outputs_class[..., 0], topk, dim=1)[1] # 選擇最大的topk的proposal
topk_coords_unact = torch.gather(enc_outputs_coord_unact, 1, topk_proposals.unsqueeze(-1).repeat(1, 1, 4)) # 選擇對(duì)應(yīng)topl score的編碼后的框
topk_coords_unact = topk_coords_unact.detach()
reference_points = topk_coords_unact.sigmoid() # 相當(dāng)于對(duì)proposal的微調(diào)
init_reference_out = reference_points
pos_trans_out = self.pos_trans_norm(self.pos_trans(self.get_proposal_pos_embed(topk_coords_unact)))
query_embed, tgt = torch.split(pos_trans_out, c, dim=2)
else:
query_embed, tgt = torch.split(query_embed, c, dim=1) # Lq x d_model
query_embed = query_embed.unsqueeze(0).expand(bs, -1, -1) # bs x Lq x d_model 每個(gè)sample的query相同,參考位置也相同
tgt = tgt.unsqueeze(0).expand(bs, -1, -1) # 初始的query
reference_points = self.reference_points(query_embed).sigmoid() # 每個(gè)query是學(xué)習(xí)到不同的參考位置
init_reference_out = reference_points
# decoder
hs, inter_references = self.decoder(tgt, reference_points, memory,
spatial_shapes, level_start_index, valid_ratios, query_embed, mask_flatten)
inter_references_out = inter_references
if self.two_stage:
return hs, init_reference_out, inter_references_out, enc_outputs_class, enc_outputs_coord_unact
return hs, init_reference_out, inter_references_out, None, None
可以發(fā)現(xiàn) level_embed
始終可學(xué)習(xí)的對(duì)于不同level進(jìn)行額外位置編碼的作用。
不考慮two_stage
的情況中query_embed
是大小的向量組,2d_model的長(zhǎng)度包含query的可學(xué)習(xí)特征以及初始化的pos編碼, reference_points對(duì)pos編碼特征進(jìn)行線性變換以得到初始可能的reference點(diǎn)。(這里有點(diǎn)值得思考的問題,相當(dāng)于query_embed中包含了兩類,一類是表觀特征,一類是位置編碼,那么我們是不是可以理解為表觀特征作為模板在編碼位置臨近進(jìn)行模板匹配呢?這樣我們可以直接提供模板特征和侯選位置。)
考慮two_stage
的情況,相當(dāng)于先利用encoder進(jìn)行proposals的粗選,即更具score篩選topk個(gè)候選位置。那么我看一看怎么由encoder提取proposals:
def gen_encoder_output_proposals(self, memory, memory_padding_mask, spatial_shapes):
N_, S_, C_ = memory.shape
base_scale = 4.0
proposals = []
_cur = 0
for lvl, (H_, W_) in enumerate(spatial_shapes):
mask_flatten_ = memory_padding_mask[:, _cur:(_cur + H_ * W_)].view(N_, H_, W_, 1)
valid_H = torch.sum(~mask_flatten_[:, :, 0, 0], 1)
valid_W = torch.sum(~mask_flatten_[:, 0, :, 0], 1)
grid_y, grid_x = torch.meshgrid(torch.linspace(0, H_ - 1, H_, dtype=torch.float32, device=memory.device),
torch.linspace(0, W_ - 1, W_, dtype=torch.float32, device=memory.device))
grid = torch.cat([grid_x.unsqueeze(-1), grid_y.unsqueeze(-1)], -1) # H x W x 2
scale = torch.cat([valid_W.unsqueeze(-1), valid_H.unsqueeze(-1)], 1).view(N_, 1, 1, 2) # 每個(gè)sample的有效尺寸
grid = (grid.unsqueeze(0).expand(N_, -1, -1, -1) + 0.5) / scale # 歸一化
wh = torch.ones_like(grid) * 0.05 * (2.0 ** lvl) # 方形的候選框,其實(shí)等價(jià)于anchor
proposal = torch.cat((grid, wh), -1).view(N_, -1, 4)
proposals.append(proposal)
_cur += (H_ * W_) # 每個(gè)level的起始索引
output_proposals = torch.cat(proposals, 1) # bs x key_num x 4
output_proposals_valid = ((output_proposals > 0.01) & (output_proposals < 0.99)).all(-1, keepdim=True)
# 篩選有效的proposal,將靠近邊界的點(diǎn)舍棄
output_proposals = torch.log(output_proposals / (1 - output_proposals))
output_proposals = output_proposals.masked_fill(memory_padding_mask.unsqueeze(-1), float('inf'))
output_proposals = output_proposals.masked_fill(~output_proposals_valid, float('inf'))
output_memory = memory
output_memory = output_memory.masked_fill(memory_padding_mask.unsqueeze(-1), float(0))
output_memory = output_memory.masked_fill(~output_proposals_valid, float(0))
output_memory = self.enc_output_norm(self.enc_output(output_memory))
return output_memory, output_proposals
for循環(huán)里是對(duì)不同level的所有格點(diǎn)創(chuàng)建不同尺寸的anchor框,scale其實(shí)是對(duì)有效區(qū)域的處理,后續(xù)對(duì)output_proposals的處理是篩選掉邊界附近的候選,輸出是對(duì)應(yīng)位置的特征和編碼后的proposal, 對(duì)應(yīng)位置的特征用于映射proposal的類別score以及校正偏差。值得注意的是proposal并沒有直接使用原始坐標(biāo),而是進(jìn)行了log的編碼
, 在forward中的two_stage情況提取reference_points是使用sigmoid函數(shù)進(jìn)行了解碼,我們假設(shè)偏置量為0,可以發(fā)現(xiàn):
以上就是整個(gè)transformer的實(shí)現(xiàn)過程,不考慮two-stage的情形就是encoder和decoder的調(diào)用,而ecoderlayer和decoderlayer主要是deformAttn的調(diào)用。
下一篇我們來看整個(gè)deformable DETR的實(shí)現(xiàn),即backbone + transformer以及FFN過程, transformer提供了每個(gè)query變換后的embedding和學(xué)習(xí)到的reference_points, FFN則將其轉(zhuǎn)換為bbox和score。