Kaggle初探--房價預測案例之模型建立

概述

本文數據來源kaggle的House Prices: Advanced Regression Techniques大賽。

本文接著Kaggle 初探 -- 房價預測案例之數據分析做模型部分。

import pandas as pd
import numpy as np
import seaborn as sns
from scipy import stats
from scipy.stats import skew
from scipy.stats import norm
import matplotlib
import matplotlib.pyplot as plt
from sklearn.preprocessing import StandardScaler
from sklearn.manifold import TSNE
from sklearn.cluster import KMeans
from sklearn.decomposition import PCA
from sklearn.preprocessing import StandardScaler

# import warnings
# warnings.filterwarnings('ignore')

%config InlineBackend.figure_format = 'retina' #set 'png' here when working on notebook
%matplotlib inline
train_df = pd.read_csv("../input/train.csv")
test_df = pd.read_csv("../input/test.csv")

特征工程

此處特征的處理根據Kaggle 初探 -- 房價預測案例之數據分析的分析來做。

all_df = pd.concat((train_df.loc[:,'MSSubClass':'SaleCondition'], test_df.loc[:,'MSSubClass':'SaleCondition']), axis=0,ignore_index=True)
all_df['MSSubClass'] = all_df['MSSubClass'].astype(str)
quantitative = [f for f in all_df.columns if all_df.dtypes[f] != 'object']
qualitative = [f for f in all_df.columns if all_df.dtypes[f] == 'object']

缺失數據處理

對于缺失數據,我們直接將列刪除

missing = all_df.isnull().sum()
missing.sort_values(inplace=True,ascending=False)
missing = missing[missing > 0]
#dealing with missing data
all_df = all_df.drop(missing[missing>1].index,1)
# 對于missing 1 的我們到時候以平均數填充
all_df.isnull().sum()[all_df.isnull().sum()>0]
Exterior1st    1
Exterior2nd    1
BsmtFinSF1     1
BsmtFinSF2     1
BsmtUnfSF      1
TotalBsmtSF    1
Electrical     1
KitchenQual    1
GarageCars     1
GarageArea     1
SaleType       1
dtype: int64

處理log項

GrLivArea、1stFlrSF、2ndFlrSF、TotalBsmtSF、LotArea、KitchenAbvGr、GarageArea 以上特征我們進行logp處理

logfeatures = ['GrLivArea','1stFlrSF','2ndFlrSF','TotalBsmtSF','LotArea','KitchenAbvGr','GarageArea']
for logfeature in logfeatures:
    all_df[logfeature] = np.log1p(all_df[logfeature].values)

處理Boolean變量

all_df['HasBasement'] = all_df['TotalBsmtSF'].apply(lambda x: 1 if x > 0 else 0)
all_df['HasGarage'] = all_df['GarageArea'].apply(lambda x: 1 if x > 0 else 0)
all_df['Has2ndFloor'] = all_df['2ndFlrSF'].apply(lambda x: 1 if x > 0 else 0)
all_df['HasWoodDeck'] = all_df['WoodDeckSF'].apply(lambda x: 1 if x > 0 else 0)
all_df['HasPorch'] = all_df['OpenPorchSF'].apply(lambda x: 1 if x > 0 else 0)
all_df['HasPool'] = all_df['PoolArea'].apply(lambda x: 1 if x > 0 else 0)
all_df['IsNew'] = all_df['YearBuilt'].apply(lambda x: 1 if x > 2000 else 0)
quantitative = [f for f in all_df.columns if all_df.dtypes[f] != 'object']
qualitative = [f for f in all_df.columns if all_df.dtypes[f] == 'object']

對于定性變量的encode

all_dummy_df = pd.get_dummies(all_df)

對于數值變量進行標準化

all_dummy_df.isnull().sum().sum()
6
mean_cols = all_dummy_df.mean()
all_dummy_df = all_dummy_df.fillna(mean_cols)
all_dummy_df.isnull().sum().sum()
0
X = all_dummy_df[quantitative]
std = StandardScaler()
s = std.fit_transform(X)
all_dummy_df[quantitative] = s
dummy_train_df = all_dummy_df.loc[train_df.index]
dummy_test_df = all_dummy_df.loc[test_df.index]
y_train = np.log(train_df.SalePrice)

模型預測

此處我們先運用多個模型進行預測,最后進行bagging操作

嶺回歸

from sklearn.linear_model import Ridge
from sklearn.model_selection import cross_val_score
y_train.values
array([ 12.24769432,  12.10901093,  12.31716669, ...,  12.49312952,
        11.86446223,  11.90158345])
def rmse_cv(model):
    rmse= np.sqrt(-cross_val_score(model, dummy_train_df, y_train.values, scoring="neg_mean_squared_error", cv = 5))
    return(rmse)
alphas = np.logspace(-3, 2, 50)
cv_ridge = []
coefs = []
for alpha in alphas:
    model = Ridge(alpha = alpha)
    model.fit(dummy_train_df,y_train)
    cv_ridge.append(rmse_cv(model).mean())
    coefs.append(model.coef_)
import matplotlib.pyplot as plt
%matplotlib inline
cv_ridge = pd.Series(cv_ridge, index = alphas)
cv_ridge.plot(title = "Validation - Just Do It")
plt.xlabel("alpha")
plt.ylabel("rmse")
# plt.plot(alphas, cv_ridge)
# plt.title("Alpha vs CV Error")
<matplotlib.text.Text at 0x118dd0ef0>
output_30_1.png
# 嶺跡圖
# matplotlib.rcParams['figure.figsize'] = (12.0, 12.0)
ax = plt.gca()

# ax.set_color_cycle(['b', 'r', 'g', 'c', 'k', 'y', 'm'])

ax.plot(alphas, coefs)
ax.set_xscale('log')
ax.set_xlim(ax.get_xlim()[::-1])  # reverse axis
plt.xlabel('alpha')
plt.ylabel('weights')
plt.title('Ridge coefficients as a function of the regularization')
plt.axis('tight')
plt.show()
output_31_0.png

很尷尬的嶺跡圖,主要是現在feature太多了。看不出什么東西來

Lasso

Lasso能針對上面特征太多的問題,來選擇一部分重要的特征

from sklearn.linear_model import Lasso,LassoCV
# alphas = np.logspace(-3, 2, 50)
# alphas = [1, 0.1, 0.001, 0.0005]
alphas = np.logspace(-4, -2, 100)
cv_lasso = []
coefs = []
for alpha in alphas:
    model = Lasso(alpha = alpha,max_iter=5000)
    model.fit(dummy_train_df,y_train)
    cv_lasso.append(rmse_cv(model).mean())
    coefs.append(model.coef_)
cv_lasso = pd.Series(cv_lasso, index = alphas)
cv_lasso.plot(title = "Validation - Just Do It")
plt.xlabel("alpha")
plt.ylabel("rmse")
# plt.plot(alphas, cv_ridge)
# plt.title("Alpha vs CV Error")
<matplotlib.text.Text at 0x118bca940>
output_36_1.png
print(cv_lasso.min(), cv_lasso.argmin())
0.128843680722 0.000585702081806
model = Lasso(alpha = 0.00058,max_iter=5000)
model.fit(dummy_train_df,y_train)
Lasso(alpha=0.00058, copy_X=True, fit_intercept=True, max_iter=5000,
   normalize=False, positive=False, precompute=False, random_state=None,
   selection='cyclic', tol=0.0001, warm_start=False)
coef = pd.Series(model.coef_, index = dummy_train_df.columns)
print("Lasso picked " + str(sum(coef != 0)) + " variables and eliminated the other " +  str(sum(coef == 0)) + " variables")
Lasso picked 84 variables and eliminated the other 142 variables
imp_coef = pd.concat([coef.sort_values().head(10),
                     coef.sort_values().tail(10)])
matplotlib.rcParams['figure.figsize'] = (8.0, 10.0)
imp_coef.plot(kind = "barh")
plt.title("Coefficients in the Lasso Model")
<matplotlib.text.Text at 0x11aa1dbe0>
output_42_1.png

Elastic Net

結合了 Lasso 和 Ridge 兩個模型,既能解決 Lasso 的共線問題,又能很好的篩選變量

from sklearn.linear_model import ElasticNet,ElasticNetCV
elastic = ElasticNetCV(l1_ratio=[.1, .5, .7, .9, .95, .99, 1], 
                                    alphas=[0.001, 0.05, 0.1, 0.3, 1, 3, 5, 10, 15, 30, 50, 75], cv=5,max_iter=5000)
elastic.fit(dummy_train_df, y_train)
ElasticNetCV(alphas=[0.001, 0.05, 0.1, 0.3, 1, 3, 5, 10, 15, 30, 50, 75],
       copy_X=True, cv=5, eps=0.001, fit_intercept=True,
       l1_ratio=[0.1, 0.5, 0.7, 0.9, 0.95, 0.99, 1], max_iter=5000,
       n_alphas=100, n_jobs=1, normalize=False, positive=False,
       precompute='auto', random_state=None, selection='cyclic',
       tol=0.0001, verbose=0)
rmse_cv(elastic).mean()
0.12908591441325348

特征二

很尷尬的發現這種提取特征的方式,取得的結果不是很好,所以,此處我們采用https://www.kaggle.com/opanichev/ensemble-of-4-models-with-cv-lb-0-11489 這篇文章的方式來處理特征

import utils
train_df_munged,label_df,test_df_munged = utils.feature_engineering()
Training set size: (1456, 111)
Test set size: (1459, 111)
Features engineering..
0:00:14.427659
test_df = pd.read_csv('../input/test.csv')
from sklearn.metrics import mean_squared_error,make_scorer
from sklearn.model_selection import cross_val_score
# 定義自己的score函數
def my_custom_loss_func(ground_truth, predictions):
    return np.sqrt(mean_squared_error(np.exp(ground_truth), np.exp(predictions)))

my_loss_func  = make_scorer(my_custom_loss_func, greater_is_better=False)
def rmse_cv2(model):
    rmse= np.sqrt(-cross_val_score(model, train_df_munged, label_df.SalePrice, scoring='neg_mean_squared_error', cv = 5))
    return(rmse)

L2 嶺回歸

from sklearn.linear_model import RidgeCV,Ridge
alphas = np.logspace(-3, 2, 100)
model_ridge = RidgeCV(alphas=alphas).fit(train_df_munged, label_df.SalePrice)
# Run prediction on training set to get a rough idea of how well it does.
pred_Y_ridge = model_ridge.predict(train_df_munged)
print("Ridge score on training set: ", model_ridge.score(train_df_munged,label_df.SalePrice))
Ridge score on training set:  0.940191172098
print("cross_validation: ",rmse_cv2(model_ridge).mean())
cross_validation:  0.111384227695

Lasso

from sklearn.linear_model import Lasso,LassoCV
model_lasso = LassoCV(eps=0.0001,max_iter=20000).fit(train_df_munged, label_df.SalePrice)
# Run prediction on training set to get a rough idea of how well it does.
pred_Y_lasso = model_lasso.predict(train_df_munged)
print("Lasso score on training set: ", model_lasso.score(train_df_munged,label_df.SalePrice))
Lasso score on training set:  0.940560493411
print("cross_validation: ",rmse_cv2(model_lasso).mean())
cross_validation:  0.11036670335

Elastic Net

from sklearn.linear_model import ElasticNet,ElasticNetCV
model_elastic = ElasticNetCV(l1_ratio=[.1, .5, .7, .9, .95, .99, 1], 
                                    alphas=[0.001, 0.05, 0.1, 0.3, 1, 3, 5, 10, 15, 30, 50, 75], cv=5,max_iter=10000)
model_elastic.fit(train_df_munged, label_df.SalePrice)
ElasticNetCV(alphas=[0.001, 0.05, 0.1, 0.3, 1, 3, 5, 10, 15, 30, 50, 75],
       copy_X=True, cv=5, eps=0.001, fit_intercept=True,
       l1_ratio=[0.1, 0.5, 0.7, 0.9, 0.95, 0.99, 1], max_iter=10000,
       n_alphas=100, n_jobs=1, normalize=False, positive=False,
       precompute='auto', random_state=None, selection='cyclic',
       tol=0.0001, verbose=0)
# Run prediction on training set to get a rough idea of how well it does.
pred_Y_elastic = model_elastic.predict(train_df_munged)
print("Elastic score on training set: ", model_elastic.score(train_df_munged,label_df.SalePrice))
Elastic score on training set:  0.940707195529
print("cross_validation: ",rmse_cv2(model_elastic).mean())
cross_validation:  0.109106832215

XGBoost

參看:https://www.kaggle.com/aharless/amit-choudhary-s-kernel-notebook-ified

此處XGBoost怎么進行調優缺失

# XGBoost -- I did some "manual" cross-validation here but should really find
# these hyperparameters using CV. ;-)

import xgboost as xgb

model_xgb = xgb.XGBRegressor(
                 colsample_bytree=0.2,
                 gamma=0.0,
                 learning_rate=0.05,
                 max_depth=6,
                 min_child_weight=1.5,
                 n_estimators=7200,                                                                  
                 reg_alpha=0.9,
                 reg_lambda=0.6,
                 subsample=0.2,
                 seed=42,
                 silent=1)

model_xgb.fit(train_df_munged, label_df.SalePrice)

# Run prediction on training set to get a rough idea of how well it does.
pred_Y_xgb = model_xgb.predict(train_df_munged)
print("XGBoost score on training set: ", model_xgb.score(train_df_munged,label_df.SalePrice)) # 過擬合
XGBoost score on training set:  0.990853904354
print("cross_validation: ",rmse_cv2(model_xgb).mean())
cross_validation:  0.11857237109
print("score: ",mean_squared_error(model_xgb.predict(train_df_munged),label_df.SalePrice))
score:  0.0014338471114

Ensemble

from sklearn.linear_model import LinearRegression
# Create linear regression object
regr = LinearRegression()
train_x = np.concatenate(
    (pred_Y_lasso[np.newaxis, :].T,pred_Y_ridge[np.newaxis, :].T,
     pred_Y_elastic[np.newaxis, :].T,pred_Y_xgb[np.newaxis, :].T), axis=1)
regr.fit(train_x,label_df.SalePrice)
LinearRegression(copy_X=True, fit_intercept=True, n_jobs=1, normalize=False)
regr.coef_
array([ 2.28665601, -0.15426296, -2.43483763,  1.30394217])
print("Ensemble score on training set: ", regr.score(train_x,label_df.SalePrice)) # 過擬合
Ensemble score on training set:  0.993716162184

很尷尬的發現通過ensemble操作并沒有任何幫助

print("score: ",mean_squared_error(regr.predict(train_x),label_df.SalePrice))
score:  0.000985126664884

提交答案

model_lasso.predict(test_df_munged)[np.newaxis, :].T
array([ 11.67407587,  11.95939264,  12.11110308, ...,  12.01706033,
        11.70077616,  12.29221647])
test_x = np.concatenate(
(model_lasso.predict(test_df_munged)[np.newaxis, :].T,model_ridge.predict(test_df_munged)[np.newaxis, :].T,
                           model_elastic.predict(test_df_munged)[np.newaxis, :].T, model_xgb.predict(test_df_munged)[np.newaxis, :].T)
        ,axis=1)
y_final = regr.predict(test_x)
y_final
array([ 11.83896506,  11.95544055,  12.08303061, ...,  12.02530217,
        11.71776755,  12.16714229])
submission_df = pd.DataFrame(data= {'Id' : test_df.Id, 'SalePrice': np.exp(y_final)})
submission_df.to_csv("bag-4.csv",index=False) # 取消index的存儲

最后編輯于
?著作權歸作者所有,轉載或內容合作請聯系作者
平臺聲明:文章內容(如有圖片或視頻亦包括在內)由作者上傳并發布,文章內容僅代表作者本人觀點,簡書系信息發布平臺,僅提供信息存儲服務。

推薦閱讀更多精彩內容