zhuang_gj
3月-11-2021
上一次分析講了如何整理好Copy Number Segment 數據,這次我們使用GISTIC2.0來識別體細胞拷貝數改變(SCNA),然后找到這些拷貝數顯著變化的多基因區域。
- GISTIC2.0 facilitates sensitive and confident localization of the targets of focal somatic copy-number alteration in human cancers
- Gistic2.0 軟件
- Copy Number Variation Analysis Pipeline
數據準備
- seg file:MaskedCopyNumberSegment(Tumor).txt
- markers file:hg_marker_file.txt
- refgene file:在線分析提供參考基因組
Gistic官網
這三個文件必須要準備才能進行分析。點擊Upload file 上次相關文件。參考基于組選擇的是Hg38
選擇性調整參數.
這里我設置的是0.99
點擊RUN
運行完成后是這樣的
總共是19個文件。
得到結果后就是理解輸出結果的內容。
Gistic 2.0輸出結果解釋
- all_lesions.conf_XX.txt,其中XX是置信度
匯總了GISTIC運行的結果。它包含有關擴增和缺失重要區域的數據,以及每個區域中擴增或缺失哪些樣品的數據。
- 擴增基因文件(Amp_genes.conf_XX.txt,其中XX是置信度)
- 缺失基因文件(Del_genes.conf_XX.txt,其中XX是置信度)
- all_thresholded.by_genes.txt
The table in this file is obtained by applying both low- and high-level thresholds to the gene copy levels of all the samples. The entries with value +/- 2 exceed the high-level thresholds for amps/dels, and those with +/- 1 exceed the low-level thresholds but not the high-level thresholds. The low-level thresholds are just the 'amplifications_threshold' and 'deletions_threshold' noise threshold input values (typically 0.1 or 0.3) and are the same for every threshold.
Amplification GISTIC plot:
上面是G-scores ,下面是q-values ,顯示每條染色體顯著擴增的位置。在“綠色”垂線右邊的是有統計學意義的。同理可得Deletion GISTIC plot。
下次分享maftools可視化相關結果以及挑選拷貝數變化的基因。